AI绘画Stable Diffusion【图生图教程】:图片高清修复的三种方案详解,你一定能用上!(附资料)
大家好,我是画画的小强
今天给大家分享一下用AI绘画Stable Diffusion 进行 高清修复(Hi-Res Fix),这是用于提升图像分辨率和细节的技术。在生成图像时,初始的低分辨率图像会通过放大算法和细节增强技术被转换为高分辨率版本。这种方法能够显著提高图像的清晰度和视觉效果,特别适用于需要精细细节的场景。
高清修复的三种方案
如何让图片更清晰、更有细节?
1、文生图:高分辨率修复(Hi-Res Fix)
[示例]宽度:750,高度:450
[示例]模型(Checkpoint):AnythingXL_v50.safetensors
[示例]终止层数(CLIP):2
[示例]采样方法(Sampler):Euler
[示例]迭代步数(Steps):32
[示例]提示词引导系数(CFG Scale):12
[示例]随机数种子(Seed):1528633348[示例]正向提示词:(white background,:1.5)1gril,clear face,High definition,white >background,paint effect,long hair girl with white mixed with rainbow color flowing hair and starry color clothes,Beautiful hair,white hrie,rainbow hair,
[示例]反向提示词:lowres,bad anatomy,bad hands,text,error,missing fngers,extra digt,fewer digits,cropped,wort quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurry,bad feet,nsfw,Deformed body,spectacles,Deformed face,blue face,dark background,black background,Rainbow backgroundm,cover the body,
步骤2:放大修复
勾选“高分辨率修复(Hires.fix)”,放大倍数根据你的需要选择,放大算法可以根据模型推荐或自行尝试后进行选择,一般来说二次元图片可采用“R-ESRGAN 4x+Anime6B”、真实图片可采用“R-ESRGAN 4x+”,高清迭代步数设置为0(表示沿用原始迭代步数),设置重绘幅度(如希望接近原始画面,不建议超过0.5)
关于R-ESRGAN 4x+
R-ESRGAN 4x+是一种图像超分辨率重建算法,全称为“Real-Time Enhanced Super-Resolution Generative Adversarial Network 4x+”。这是基于生成式对抗网络(GAN)的一种算法,是ESRGAN(Enhanced Super-Resolution Generative Adversarial Networks)的改进版本之一。R-ESRGAN 4x+通过引入残差连接和递归结构,优化了ESRGAN的生成器网络,并使用GAN进行训练。这使得R-ESRGAN 4x+在提高图像分辨率的同时,能够增强图像的细节和纹理,生成的图像质量相比传统方法更高。它在多个图像增强任务中表现出色,例如图像超分辨率、图像去模糊和图像去噪等。
步骤3:生成高分辨率图片
-
点击生成边生成了经过高分辨率修复放大后的图片了
高分辨率修复适用于文生图的普遍细节优化,可以克服直接生成高分辨率图片时的细节错误问题,但其并不能突破显存限制生成高于你显卡性能所能达到的最高分辨率图片。高分辨率修复需要更多的GPU运算,生成速度比较慢,所以可以在低分辨率的情况下得到自己满意的图片后,通过固定随机数种子后来进行高分辨率修复得到一张高清大图。
2. 图生图
“分区域画,拼到一起”。图生图本身就是一种高清修复,当你导入一张图片后,设置新的分辨率,SD就会根据新的分辨率模仿原图重新画一张图。
我以一张原始尺寸为450*658的图片为例:
过程描述:
步骤1:设置图生图放大算法
在设置中,点击侧边菜单中的“后期处理-放大”,在“图生图放大算法”中选择算法后,按上方的“保存设置”。
-
步骤2:Upscale放大脚本
-
在图生图中导入需要放大的图片,选择合适的模型,按小三角按钮读取一下图片的原始尺寸,重绘幅度同样建议不高于0.5。
-
在下方的脚本选项中选择“SD Upscale”,选择合适的放大倍数,放大算法选择参考我之前文生图中的说明。分块重叠像素宽度设置一个合适的值,我这里选择64
-
步骤3:根据分块重叠像素宽带调整重绘尺寸的值
-
将你设置好的分块重叠像素宽的值加到你重绘尺寸上的值,然后重新输入一个数值。(我这里原图是450*658,那宽度就是450+64=514,长度就是658+64=722)
-
步骤4:生成图片
-
点击生成,便会生成一张分辨率是原始尺寸两倍大小的高清放大图了。而且它是通过分区域画,后拼到一起的图,通过这个方式高清放大的图可以突破我们显卡显存的上限,生成出高于分辨率上限4倍的图像尺寸。
-
而我们设置的分块重叠像素宽度值就是用来平滑过渡这四块区域的衔接处的。
3. 生成后处理:后期处理
简单放大,随时可用
过程描述:
-
步骤1:设置放大算法
-
参考之前教程的建议,选择合适的放大算法,选择你希望的缩放比例。(这里可以同时利用两种放大算法,并设置算法2的强度后来提高图像放大的效果。)
-
步骤2:生成图片
-
点击生成,便能快速生成一张放大的图片了。
-
虽然生成的速度要比前两种方法快,但整体的精细度并不如前两种采用重绘的方式来放大的效果好。
通过以上步骤,你可以生成高质量的高分辨率图像,满足各种需求。从模型生成初始图像,再到应用高清修复技术,可以显著提升图像的清晰度和视觉效果。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

相关文章:

AI绘画Stable Diffusion【图生图教程】:图片高清修复的三种方案详解,你一定能用上!(附资料)
大家好,我是画画的小强 今天给大家分享一下用AI绘画Stable Diffusion 进行 高清修复(Hi-Res Fix),这是用于提升图像分辨率和细节的技术。在生成图像时,初始的低分辨率图像会通过放大算法和细节增强技术被转换为高分辨…...

适用于Mac和Windows的最佳iPhone恢复软件
本文将指导您选择一款出色的iPhone数据恢复软件来检索您的宝贵数据。 市场上有许多所谓的iPhone恢复程序。各种程序很难选择并选择其中之一。一旦您做出了错误的选择,您的数据就会有风险。 最好的iPhone数据恢复软件应包含以下功能。 1.安全可靠。 2.恢复成功率高…...

64.ThreadLocal造成的内存泄漏
内存泄漏 程序中已动态分配的堆内存,由于某种原因程序为释放和无法释放,造成系统内存的浪费,导致程序运行速度减慢甚至系统崩溃等严重后果。内存泄漏的堆积终将导致内存溢出。 内存溢出 没有足够的内存提供申请者使用。 ThreadLocal出现内存泄漏的真实原因 内存泄漏的发…...

深入刨析Redis存储技术设计艺术(二)
三、Redis主存储 3.1、存储相关结构体 redisServer:服务器 server.h struct redisServer { /* General */ pid_t pid; /* Main process pid. */ pthread_t main_thread_id; /* Main thread id */ char *configfile; /* Absolut…...

python读取写入txt文本文件
读取 txt 文件 def read_txt_file(file_path):"""读取文本文件的内容:param file_path: 文本文件的路径:return: 文件内容"""try:with open(file_path, r, encodingutf-8) as file:content file.read()return contentexcept FileNotFoundError…...

日期选取限制日期范围antdesign vue
限制选取的日期范围 效果图 <a-date-pickerv-model"dateTime"format"YYYY-MM-DD":disabled-date"disabledDate"valueFormat"YYYY-MM-DD"placeholder"请选择日期"allowClear />methods:{//回放日期选取范围限制&…...

【大模型】衡量巨兽:解读评估LLM性能的关键技术指标
衡量巨兽:解读评估LLM性能的关键技术指标 引言一、困惑度:语言模型的试金石1.1 定义与原理1.2 计算公式1.3 应用与意义 二、BLEU 分数:翻译质量的标尺2.1 定义与原理2.2 计算方法2.3 应用与意义 三、其他评估指标:综合考量下的多元…...

《优化接口设计的思路》系列:第2篇—小程序性能优化
优化Uniapp应用程序的性能可以从以下几个方面进行优化: 1.减少页面加载时间:避免页面过多和过大的组件,减少不必要的资源加载。可以使用懒加载的方式,根据用户的实际需求来加载页面和组件。 2.节流和防抖:对于频繁触发…...

prototype 和 __proto__的区别
prototype 和 __proto__ 在 JavaScript 中都与对象的原型链有关,但它们各自有不同的用途和含义。 prototype prototype 是函数对象的一个属性,它指向一个对象,这个对象包含了可以由特定类型的所有实例共享的属性和方法。当我们创建一个新的…...

网络中未授权访问漏洞(Rsync,PhpInfo)
Rsync未授权访问漏洞 Rsync未授权访问漏洞是指Rsync服务配置不当或存在漏洞,导致攻击者可以未经授权访问和操作Rsync服务。Rsync是一个用于文件同步和传输的开源工具,通常在Unix/Linux系统上使用。当Rsync服务未经正确配置时,攻击者可以利用…...

DataWhaleAI分子预测夏令营 学习笔记
AI分子预测夏令营学习笔记 一、直播概览 主持人介绍 姓名:徐翼萌角色:DataWhale助教活动目的:分享机器学习赛事经验,提升参赛者在分子预测领域的能力 嘉宾介绍 姓名:余老师背景:Data成员,腾…...

lnmp php7 安装ssh2扩展
安装ssh2扩展前必须安装libssh2包 下载地址: wget http://www.libssh2.org/download/libssh2-1.11.0.tar.gzwget http://pecl.php.net/get/ssh2-1.4.tgz (这里要换成最新的版本) 先安装 libssh2 再安装 SSH2: tar -zxvf libssh2-1.11.0.tar.gzcd libss…...

数据库概念题总结
1、 2、简述数据库设计过程中,每个设计阶段的任务 需求分析阶段:从现实业务中获取数据表单,报表等分析系统的数据特征,数据类型,数据约束描述系统的数据关系,数据处理要求建立系统的数据字典数据库设计…...

提升用户体验之requestAnimationFrame实现前端动画
1)requestAnimationFrame是什么? 1.MDN官方解释 2.解析这段话: 1、那么浏览器重绘是指什么呢? ——大多数电脑的显示器刷新频率是60Hz,1000ms/6016.66666667ms的时间刷新一次 2、重绘之前调用指定的回调函数更新动画? ——requ…...

Mysql慢日志、慢SQL
慢查询日志 查看执行慢的SQL语句,需要先开启慢查询日志。 MySQL 的慢查询日志,记录在 MySQL 中响应时间超过阀值的语句(具体指运行时间超过 long_query_time 值的SQL。long_query_time 的默认值为10,意思是运行10秒以上(不含10秒…...

卫星网络——Walker星座简单介绍
一、星座构型介绍 近年来,随着卫星应用领的不断拓展,许多任务已经无法单纯依靠单颗卫星来完成。与单个卫星相比,卫星星座的覆盖范围显著增加,合理的星座构型可以使其达到全球连续覆盖或全球多重连续覆盖,这样的特性使得…...

C++ Lambda表达式第一篇, 闭合(Closuretype)
C Lambda表达式第一篇, 闭合Closuretype ClosureType::operator()(params)auto 模板参数类型显式模板参数类型其他 ClosureType::operator ret(*)(params)() lambda 表达式是唯一的未命名,非联合,非聚合类类型(称为闭包类型&#…...

移动校园(3):处理全校课程数据excel文档,实现空闲教室查询与课程表查询
首先打开教学平台 然后导出为excel文档 import mathimport pandas as pd import pymssql serverName 127.0.0.1 userName sa passWord 123456 databaseuniSchool conn pymssql.connect(serverserverName,useruserName,passwordpassWord,databasedatabase) cursor conn.cur…...

【MySQL】1.初识MySQL
初识MySQL 一.MySQL 安装1.卸载已有的 MySQL2.获取官方 yum 源3.安装 MySQL4.登录 MySQL5.配置 my.cnf 二.MySQL 数据库基础1.MySQL 是什么?2.服务器,数据库和表3.mysqld 的层状结构4.SQL 语句分类 一.MySQL 安装 1.卸载已有的 MySQL //查询是否有相关…...

查看电脑显卡(NVIDIA)应该匹配什么版本的CUDA Toolkit
被串行计算逼到要吐时,决定重拾CUDa了,想想那光速般的处理感觉(夸张了)不要太爽,记下我的闯关记录。正好我的电脑配了NVIDIA独显,GTX1650,有菜可以炒呀,没有英伟达的要绕道了。回到正…...

优化:遍历List循环查找数据库导致接口过慢问题
前提: 我们在写查询的时候,有时候会遇到多表联查,一遇到多表联查大家就会直接写sql语句,不会使用较为方便的LambdaQueryWrapper去查询了。作为一个2024新进入码农世界的小白,我喜欢使用LambdaQueryWrapper,…...

NoSQL 之 Redis 配置与常用命令
一、关系型数据库与非关系型数据库 1、数据库概述 (1)关系型数据库 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记 录。 SQL 语句(标准数据查询语言&am…...

用SpringBoot打造坚固防线:轻松实现XSS攻击防御
在这篇博客中,我们将深入探讨如何使用SpringBoot有效防御XSS攻击。通过结合注解和过滤器的方式,我们可以为应用程序构建一个强大的安全屏障,确保用户数据不被恶意脚本所侵害。 目录 什么是XSS攻击?SpringBoot中的XSS防御策略使用…...

2024机器人科研/研发领域最新研究方向岗位职责与要求
具身智能工程师 从事具身智能领域的技术研究或产品开发,制定具身智能技术标准,利用大模型技术来提高机器人的智能化水平,研究端云协同的机器人系统框架,并赋能人形/复合等各类形态的机器人。具体内容包括不限于: 1、负…...

笔记:Newtonsoft.Json 序列化接口集合
在使用 Newtonsoft.Json 序列化接口集合时,一个常见的挑战是如何处理接口的具体实现,因为接口本身并不包含关于要实例化哪个具体类的信息。为了正确序列化和反序列化接口集合,你需要提供一些额外的信息或使用自定义的转换器来指导 Newtonsoft…...

【Unity设计模式】✨使用 MVC 和 MVP 编程模式
前言 最近在学习Unity游戏设计模式,看到两本比较适合入门的书,一本是unity官方的 《Level up your programming with game programming patterns》 ,另一本是 《游戏编程模式》 这两本书介绍了大部分会使用到的设计模式,因此很值得学习 本…...

CDH安装和配置流程
这份文件是一份关于CDH(Clouderas Distribution Including Apache Hadoop)安装的详细手册,主要内容包括以下几个部分: 1. **前言**: - CDH是基于Apache Hadoop的发行版,由Cloudera公司开发。 - 相比…...

SpringMVC:SpringMVC执行流程
文章目录 一、介绍二、什么是MVC 一、介绍 Spring MVC 是一种基于Java的Web框架,它采用了MVC(Model - View - Controller)设计模式,通过吧Model、View和Controller分离,将Web层进行职责解耦,把复杂的Web应…...

如何在前端网页实现live2d的动态效果
React如何在前端网页实现live2d的动态效果 业务需求: 因为公司需要做机器人相关的业务,主要是聊天形式的内容,所以需要一个虚拟的卡通形象。而且为了更直观的展示用户和机器人对话的状态,该live2d动画的嘴型需要根据播放的内容来…...

昇思25天学习打卡营第15天|linchenfengxue
Pix2Pix实现图像转换 Pix2Pix概述 Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到…...