当前位置: 首页 > news >正文

蝙蝠优化算法(Bat Algorithm,BA)及其Python和MATLAB实现

蝙蝠优化算法(Bat Algorithm,简称BA)是一种基于蝙蝠群体行为的启发式优化算法,由Xin-She Yang于2010年提出。该算法模拟了蝙蝠捕食时在探测目标、适应环境和调整自身位置等过程中的行为,通过改进搜索过程来实现优化问题的求解。

蝙蝠群体中每一只蝙蝠代表一个潜在解,在搜索过程中,蝙蝠会根据自身位置和速度不断调整移动,并与其他蝙蝠之间通过声波进行通信,以实现信息共享和经验交流。算法通过模拟蝙蝠携带猎物的过程,同时考虑了两个方面的因素:局部搜索和全局搜索。

蝙蝠优化算法的实现步骤可以简述如下:
1. 初始化种群:随机生成初始蝙蝠群体,设定群体大小、每只蝙蝠的位置和速度等参数。
2. 优化搜索:根据蝙蝠的当前位置和速度更新解空间中的位置信息,以实现搜索过程。
3. 针对目标函数值的优化:根据目标函数值对蝙蝠进行选择和更新,逐步优化搜索空间中的解。
4. 判断终止条件:根据设定的终止条件(如迭代次数、目标函数精度等),判断是否终止搜索过程。

蝙蝠优化算法的优点包括:
1. 算法简单,易于理解与实现。
2. 可以在多种优化问题上取得良好的效果,包括连续优化、离散优化、约束优化等问题。
3. 具有较好的全局搜索能力和快速收敛特性。

然而,蝙蝠优化算法也存在一些缺点,例如:
1. 对于高维空间和复杂问题的优化效果可能不尽如人意。
2. 在解空间比较局部的情况下,容易陷入局部最优解。
3. 算法参数的设定可能影响搜索效果,需要根据具体问题进行调整。

蝙蝠优化算法在实际应用中被广泛用于解决诸如函数优化、神经网络训练、特征选择、图像处理等问题。其灵感来源于自然界中蝙蝠的行为,在一定程度上模拟了蝙蝠捕食的策略和行为,具有一定的生物学意义。通过不断改进和调整算法参数,蝙蝠优化算法有望成为一种有效的优化工具,在解决实际问题中发挥重要作用。
 

以下是蝙蝠优化算法的Python实现示例:

import numpy as np

def bat_algorithm(objective_func, dim, pop_size, max_iter, A, alpha, gamma, lb, ub):
    # 初始化种群
    bats = np.random.uniform(lb, ub, (pop_size, dim))
    velocities = np.zeros((pop_size, dim))
    fitness = np.zeros(pop_size)
    best_solution = np.zeros(dim)
    best_fitness = float('inf')

    # 开始迭代
    for t in range(max_iter):
        for i in range(pop_size):
            # 随机调整蝙蝠位置
            frequencies = np.zeros(dim)
            frequencies = frequencies + (best_solution - bats[i]) * A
            velocities[i] = velocities[i] + frequencies
            new_solution = bats[i] + velocities[i]

            # 随机探索
            if np.random.rand() > alpha:
                epsilon = np.random.uniform(-1, 1, dim) * gamma
                new_solution = new_solution + epsilon
            
            # 限制新位置在搜索空间内
            new_solution = np.clip(new_solution, lb, ub)

            # 评估新位置的适应度值
            new_fitness = objective_func(new_solution)

            # 更新最佳解和最佳适应度值
            if new_fitness < fitness[i] or np.random.rand() < 0.1:
                bats[i] = new_solution
                fitness[i] = new_fitness

                if new_fitness < best_fitness:
                    best_solution = new_solution
                    best_fitness = new_fitness

        # 输出当前迭代结果
        print("Iteration {}: Best Fitness = {}".format(t+1, best_fitness))

    return best_solution, best_fitness

# 使用示例
def sphere_func(x):
    return np.sum(x**2)

best_solution, best_fitness = bat_algorithm(sphere_func, dim=10, pop_size=20, max_iter=100, A=0.9, alpha=0.9, gamma=0.1, lb=-5, ub=5)
print("Best Solution:", best_solution)
print("Best Fitness:", best_fitness)

以下是蝙蝠优化算法的MATLAB实现示例:

function [best_solution, best_fitness] = bat_algorithm(objective_func, dim, pop_size, max_iter, A, alpha, gamma, lb, ub)

    % 初始化种群
    bats =  (ub - lb) * rand(pop_size, dim) + lb;
    velocities = zeros(pop_size, dim);
    fitness = zeros(pop_size, 1);
    best_solution = zeros(1, dim);
    best_fitness = inf;

    % 开始迭代
    for t = 1:max_iter
        for i = 1:pop_size
            % 随机调整蝙蝠位置
            frequencies = zeros(1, dim);
            frequencies = frequencies + (best_solution - bats(i, :)) * A;
            velocities(i, :) = velocities(i, :) + frequencies;
            new_solution = bats(i, :) + velocities(i, :);

            % 随机探索
            if rand() > alpha
                epsilon = (2 * rand(1, dim) - 1) * gamma;
                new_solution = new_solution + epsilon;
            end

            % 限制新位置在搜索空间内
            new_solution = max(min(new_solution, ub), lb);

            % 评估新位置的适应度值
            new_fitness = feval(objective_func, new_solution);

            % 更新最佳解和最佳适应度值
            if new_fitness < fitness(i) || rand() < 0.1
                bats(i, :) = new_solution;
                fitness(i) = new_fitness;

                if new_fitness < best_fitness
                    best_solution = new_solution;
                    best_fitness = new_fitness;
                end
            end
        end

        % 输出当前迭代结果
        disp(['Iteration ', num2str(t), ': Best Fitness = ', num2str(best_fitness)]);
    end

end

% 使用示例
sphere_func = @(x) sum(x.^2);
[best_solution, best_fitness] = bat_algorithm(sphere_func, 10, 20, 100, 0.9, 0.9, 0.1, -5, 5);
disp('Best Solution:');
disp(best_solution);
disp('Best Fitness:');
disp(best_fitness);

相关文章:

蝙蝠优化算法(Bat Algorithm,BA)及其Python和MATLAB实现

蝙蝠优化算法&#xff08;Bat Algorithm&#xff0c;简称BA&#xff09;是一种基于蝙蝠群体行为的启发式优化算法&#xff0c;由Xin-She Yang于2010年提出。该算法模拟了蝙蝠捕食时在探测目标、适应环境和调整自身位置等过程中的行为&#xff0c;通过改进搜索过程来实现优化问题…...

vscode运行java中文乱码,引发的mac配置问题

文章目录 问题 vscode 安装 java环境之后 public class Main{ public static void main(String[] args) { System.out.println(“哈哈”); } } ➜ .leetcode cd “/Users/leesin/.leetcode/.vscode/” && javac -encoding utf-8 Main.java && java Main &am…...

MySQL之备份与恢复(五)

备份与恢复 备份数据 符号分隔文件备份 可以使用SQL命令SELECT INTO OUTFILE以符号分隔文件格式创建数据的逻辑备份。(可以用mysqldump的 --tab选项导出到符号分隔文件中)。符号分隔文件包含以ASCII展示的原始数据&#xff0c;没有SQL、注释和列名。下面是一个导出为逗号分隔…...

离线运行Llama3:本地部署终极指南_liama2 本地部署

4月18日&#xff0c;Meta在官方博客官宣了Llama3&#xff0c;标志着人工智能领域迈向了一个重要的飞跃。经过笔者的个人体验&#xff0c;Llama3 8B效果已经超越GPT-3.5&#xff0c;最为重要的是&#xff0c;Llama3是开源的&#xff0c;我们可以自己部署&#xff01; 本文和大家…...

【YOLO8系列】(二)YOLOv8环境配置,手把手嘴对嘴保姆教学

目录 一. 准备环境 1.Anaconda下载 2.创建yolov8虚拟环境 3.pytorch安装 4.CUDA下载 5.CUDNN下载 二、yolov8模型下载 1.clone模型 2.pycharm配置 ①解释器配置 ②终端配置 3.安装必要库 4.下载训练模型 三、 环境验证 四、总结 YOLOv8 是 YOLO 系列最新的目标…...

MFC常见问题解决

文章目录 1. 单文档程序初始化显示设置问题解决方案 2. MFC中控件响应出错 1. 单文档程序初始化显示设置 问题 在Microsoft Foundation Classes (MFC) 中&#xff0c;单文档应用程序&#xff08;SDI&#xff09;的初始化时默认并不设置为最大显示。但你可以通过编程方式在程序…...

学生管理系统 | python

1. 题目描述 ****************************** 欢迎使用学生管理系统 ****************************** 1. 添加学生 2. 查看学生列表 3. 查看学生信息 4. 删除学生 5. 退出系统 1 请输入学生姓名: zhangsan 请输入学生学号: 10010 请输入学生班级: 3 请输入学生成…...

opencv读取视频文件夹内视频的名字_时长_帧率_分辨率写入excel-cnblog

看视频的时候有的视频文件名贼长。想要翻看&#xff0c;在文件夹里根本显示不出来&#xff0c;缩短又会丢失一些信息&#xff0c;所以我写了一份Python代码&#xff0c;直接获取视频的名字&#xff0c;时长&#xff0c;帧率&#xff0c;还有分辨率写到excel里。 实际效果如下图…...

js对象的方法速览---数组的静态方法,实例方法和属性合集,各包含一个示例

tip&#xff1a; 本文仅作为查找和基本使用的展示&#xff0c;需要深入了解这些方法的使用请参考&#xff1a;Object - JavaScript | MDN (mozilla.org) 可以通过目录快速锁定需要查找的方法和查看它的使用 目录 tip&#xff1a; 新建一个对象 实例属性 实例方法 hasOwn…...

Redis基础教程(十四):Redis连接

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…...

GraphRAG——一个基于图的检索增强生成的开源项目【送源码】

GraphRAG 最近几天&#xff0c;微软团队开源了GraphRAG&#xff0c;这是一种基于图&#xff08;Graph&#xff09;的检索增强生成方法。 先说说RAG吧&#xff0c;检索增强生成&#xff0c;相当于是从一个给定好的知识库中进行检索&#xff0c;接入LLM模型&#xff0c;让模型生…...

什么是 VueQuill(前端的富文本编辑器)?

什么是 VueQuill&#xff1f; 1. 简介 VueQuill 是 Vue.js 的一个富文本编辑器插件&#xff0c;它基于 Quill 编辑器构建&#xff0c;提供了简洁且功能强大的富文本编辑功能。Quill 是一个现代化的富文本编辑器&#xff0c;提供丰富的文本编辑能力&#xff0c;支持多种格式和…...

从海上长城到数字防线:视频技术在海域边防现代化中的创新应用

随着全球化和科技发展的加速&#xff0c;海域安全问题日益凸显其重要性。海域边防作为国家安全的第一道防线&#xff0c;其监控和管理面临着诸多挑战。近年来&#xff0c;视频技术的快速发展为海域边防场景提供了新的解决方案&#xff0c;其高效、实时、远程的监控特点极大地提…...

《信息技术与信息化 》是什么级别的期刊?是正规期刊吗?能评职称吗?

问题解答 问&#xff1a;《信息技术与信息化 》是不是核心期刊&#xff1f; 答&#xff1a;不是&#xff0c;是知网收录的第一批认定学术期刊。 问&#xff1a;《信息技术与信息化 》级别&#xff1f; 答&#xff1a;省级。主管单位&#xff1a;山东省科学技术协会 主办单…...

【最新版】手把手Claude 3.5 Sonnet 详细步骤注册方法!

目录 01 Claude 3.5 Sonnet 是什么 02 Claude 3.5 Sonnet 注册方法 Step1&#xff1a;注册 Wildcard Step2&#xff1a;注册Claude3.5 Step3&#xff1a;接收并输入验证 03 使用Claude 3.5 Sonnet 04 升级Claude 3 Opus 05 结语 01 Claude 3.5 Sonnet 是什么 蛰伏了三…...

代理模式和Java中的动态代理【开发实践】

文章目录 一、代理模式基础1.1 代理模式1.2 静态代理1.3 动态代理 二、静态代理的实现三、JDK动态代理3.1 JDK动态代理概述3.2 invoke方法介绍3.3 JDK动态代理的使用 四、CGLIB动态代理3.1 CGLIB动态代理概述3.2 CGLIB动态代理的使用 五、对比5.1 代理实现与使用对比5.2 使用条…...

【Linux】进程间通信——匿名管道

目录 为什么要进行进程间通信&#xff1f; 匿名管道的具体实现 pipe创建内存级文件形成管道 pipe的简单使用 匿名管道的四种情况和五种特性 四种情况 五种特性 PIPE_BUF 命令行管道 | 功能代码&#xff1a;创建进程池 为什么要进行进程间通信&#xff1f; 1.数据传输&…...

React Native与React Native Web:跨平台开发的新选择

React Native和React Native Web是两种基于React框架的跨平台开发技术&#xff0c;它们分别针对原生移动应用和Web应用的开发&#xff0c;但都提供了统一的开发体验和代码复用能力。 React Native 概述 React Native允许开发者使用React的组件化思想和JavaScript编写原生级别…...

【从零开始实现stm32无刷电机FOC】【理论】【3/6 位置、速度、电流控制】

目录 PID控制滤波单独位置控制单独速度控制单独电流控制位置-速度-电流串级控制 上一节&#xff0c;通过对SVPWM的推导&#xff0c;我们获得了控制电机转子任意受力的能力。本节&#xff0c;我们选用上节得到的转子dq轴解耦的SVPWM形式&#xff0c;对转子受力进行合理控制&…...

使用MySQLInstaller配置MySQL

操作步骤 1.配置High Availability 默认选项Standalone MySQL Server classic MySQL Replication 2.配置Type and Networking ◆端口默认启用TCP/P网络 ◆端口默认为3306 3.配置Account and Roles 设置root账户的密码、添加其他管理员 4.配置Windows Service ◆配置MySQL Serv…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...