当前位置: 首页 > news >正文

量化交易策略:赌徒在股市会运用凯利公式(附python代码)

一、凯利公式的历史

凯利公式(Kelly Criterion)是由美国贝尔实验室物理学家约翰·拉里·凯利(John Larry Kelly)于1956年提出的,用于计算最优投资比例的一种数学公式。凯利公式的核心思想是:在期望收益和风险之间找到一个平衡点,使得投资者在承担一定风险的情况下,能够获得最大化的收益,后来被广泛应用于投资领域,特别是股票量化交易策略中。
凯利公式的提出,为投资者提供了一个科学的决策依据,使得投资者在面对不确定性时,能够更加理性地进行投资决策。自凯利公式问世以来,被无数投资者所推崇。

二、凯利公式的原理

凯利公式的数学表达式为:
f = (bp - q) / b
其中,f表示最优投资比例,b表示赔率,p表示获胜概率,q表示失败概率。
凯利公式的应用,可以帮助投资者在面对多个投资品种时,合理地分配资金,以实现最大化的收益。通过凯利公式,投资者可以计算出每个投资品种应该投入的资金比例,从而在不确定的市场环境中,做出最佳的投资决策。

三、凯利公式的Python代码实现

先导入所需的库:

import numpy as np

接下来,定义一个函数来计算赔率、获胜概率和失败概率:

相关文章:

量化交易策略:赌徒在股市会运用凯利公式(附python代码)

一、凯利公式的历史 凯利公式(Kelly Criterion)是由美国贝尔实验室物理学家约翰拉里凯利(John Larry Kelly)于1956年提出的,用于计算最优投资比例的一种数学公式。凯利公式的核心思想是:在期望收益和风险之间找到一个平衡点,使得投资者在承担一定风险的情况下,能够获得…...

信息系统项目管理师【一】英文选择题词汇大全(1)

一、计算机相关词汇 数据挖掘 Data Mining分布式计算 Distributed Computing云计算 Cloud Computing物联网 IOT Internet of Things大数据 Big Data人工智能 artificial intelligence互联网 Internet plus区块链 Blockchain5G 5th-Generation感知层 sensing layer机器学习 mac…...

怎么判断自己是否适合学习PMP?

判断自己是否适合学习PMP项目管理专业人士认证,可以从以下几个方面进行考量: 1、职业发展需求: 如果您在项目管理领域工作,或计划未来从事相关工作,PMP认证能显著提升您的竞争力。 对于项目经理、产品经理、技术领导…...

最新的数据防泄密方案来袭!

沙箱技术作为一种先进的数据安全解决方案,在数据防泄密领域发挥着日益重要的作用。它通过构建一个隔离的虚拟环境,使得应用程序在该环境中运行,从而隔离了应用程序对系统资源的直接访问,有效防止了数据泄露的风险。 一、沙箱技术在…...

Python数据处理之高效校验各种空值技巧详解

概要 在编程中,处理空值是一个常见且重要的任务。空值可能会导致程序异常,因此在进行数据处理时,必须确保数据的有效性。Python 提供了多种方法来处理不同数据对象的空值校验。本文将详细介绍如何对Python中的各种数据对象进行空值校验,并包含相应的示例代码,帮助全面掌握…...

Spring Boot与RSocket的集成

Spring Boot与RSocket的集成 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 一、引言 RSocket是一个基于异步、消息驱动的网络协议,旨在解决微服…...

UI Toolkit generateVisualContent的使用

方法描述: Called when the VisualElement visual contents need to be (re)generated. When this delegate is handled, you can generate custom geometry in the content region of the VisualElement. For an example, see the MeshGenerationContext documentation. This…...

第十六章 ValidationPipe验证post请求参数

在此之前我们用到的请求都是get请求,接下来我们使用post 请求 并接收参数,通过 Body 装饰器来取注意:post请求带参数 我们通过游览器路径是直接请求不了的 需要使用postman 来发 post 请求postman 下载网站 https://www.postman.com/download…...

HippoRAG如何从大脑获取线索以改进LLM检索

知识存储和检索正在成为大型语言模型(LLM)应用的重要组成部分。虽然检索增强生成(RAG)在该领域取得了巨大进步,但一些局限性仍然没有克服。 俄亥俄州立大学和斯坦福大学的研究团队推出了HippoRAG,这是一种创新性的检索框架,其设计理念源于人类…...

求函数最小值-torch版

目标:torch实现下面链接中的梯度下降法 先计算 的导函数 ,然后计算导函数 在处的梯度 (导数) 让 沿着 梯度的负方向移动, 自变量 的更新过程如下 torch代码实现如下 import torchx torch.tensor([7.5],requires_gradTrue) # print(x.gr…...

如何将HEVC格式的视频转换为无损、未压缩的MP4格式视频?

在和大家分享视频格式转换之前,先跟大家分享一下HEVC格式的视频到底是什么文件?压缩原理是什么?了解了它的本质之后,我们就可以知道如何保证视频高清无损了。 如何将HEVC格式的视频转换为无损、未压缩的MP4格式视频? …...

自定义在线活动报名表单小程序源码系统 源代码+搭建部署教程 可二次定制开发

系统概述 在数字化时代,线上活动成为连接用户与组织的重要桥梁。为了高效地管理活动报名流程,一款灵活、易用的在线活动报名表单小程序显得尤为重要。本文旨在为开发者提供一套全面的解决方案,包括自定义在线活动报名表单小程序的源代码分析…...

数据分析入门指南:表结构数据(三)

在数字化转型的浪潮中,表结构数据作为企业决策支持系统的核心要素,其重要性日益凸显。本文深入剖析了表结构数据的本质特征、高效处理策略,并探讨了其在现代商业智能环境中的广泛应用,旨在为数据分析师与决策者提供前沿洞察与实战…...

凌凯科技前五大客户依赖症加剧:研发费用率骤降,应收账款大增

《港湾商业观察》黄懿 6月13日,上海凌凯科技股份有限公司(下称“凌凯科技”)在港交所提交上市申请,拟于主板上市,华泰国际为其独家保荐人。 凌凯科技致力于提供小分子化合物技术和产品解决方案,专注于制药…...

5 科大讯飞AI大赛:热力学定律的电池材料生产参数动态调控

赛题名称:基于热力学定律的电池材料生产参数动态调控挑战赛 赛题类型:数据挖掘 赛题任务:利用时空模型进行建模并预测匣钵实际温度 赛题链接:https://challenge.xfyun.cn/topic/info?typebattery-material&optiontjjg&…...

概论(二)随机变量

1.名词解释 1.1 样本空间 一次具体实验中所有可能出现的结果,构成一个样本空间。 1.2 随机变量 把结果抽象成数值,结果和数值的对应关系就形成了随机变量X。例如把抛一次硬币的结果,正面记为1,反面记为0。有变量相对应的就有自…...

Apache AGE 安装部署

AGE概述 概述 我们可以通过源码安装、拉取docker镜像运行、直接使用公有云三种方式中的任意一种来使用Apache AGE 获取 AGE 发布版本 可以在 https://github.com/apache/age/releases 找到发布版本和发布说明。 源代码 源代码可以在 https://github.com/apache/age 找到…...

Python29 Tensorflow的基本知识和使用

1. TensorFlow TensorFlow 是一个开源的机器学习框架,由 Google Brain 团队开发。它用于数据流图的计算,尤其擅长深度学习任务。在 TensorFlow 中,数据流图(Data Flow Graph)是其核心概念之一,它定义了计算…...

Linux操作系统上用到的磁盘分区管理工具

parted磁盘分区工具 磁盘格式&#xff1a;MBR, GPT, 这两种名称分别是硬盘里面分区表两种格式的称呼&#xff0c; 第一种MBR格式的分区表最大支持2TB的容量&#xff0c; 磁盘的三种分区主分区&#xff0c;扩展分区&#xff0c;逻辑分区&#xff0c;主分区扩展分区<4 第…...

Python数据结构的库之Fuk使用详解

概要 fuk 是一个用于处理 Python 数据结构的库,全称为 "Fast and Uncomplicated Kit"。它提供了一系列高效、简洁的数据结构实现,以及对 Python 内置数据结构的扩展。通过使用 fuk,开发者可以更加方便地处理列表、集合、字典等数据类型,提高代码的执行效率和可读…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...