当前位置: 首页 > news >正文

Python+ChatGPT实战之进行游戏运营数据分析

文章目录

  • 一、数据
    • 二、目标
      • 三、解决方案
        • 1. DAU
        • 2. 用户等级分布
        • 3. 付费率
        • 4. 收入情况
        • 5. 付费用户的ARPU

最近ChatGPT蛮火的,今天试着让ta写了一篇数据分析实战案例,大家来评价一下!

在这里插入图片描述

一、数据

您的团队已经为您提供了一些游戏数据,包括玩家的行为和收入情况。以下是数据的一些特征:

  • user_id: 玩家ID
  • date: 游戏日期
  • level: 玩家达到的游戏等级
  • revenue: 玩家在游戏中花费的总收入
  • spend: 玩家在游戏中的总支出

二、目标

您的目标是分析数据,以回答以下问题:

  • 游戏的DAU(日活跃用户数)是多少?
  • 用户的等级分布情况是怎样的?
  • 用户的付费率是多少?
  • 游戏的收入情况如何?
  • 付费用户的ARPU(平均收入每用户)是多少?

三、解决方案

为了回答上述问题,我们可以使用Python的各种库和工具来进行数据分析和可视化。

首先,我们需要加载数据。以下是我们将使用的Python库:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

我们可以使用pandas库中的read_csv()方法加载数据:

data = pd.read_csv("game_data.csv")

1. DAU

为了回答第一个问题,我们可以使用以下代码来计算游戏的DAU:

dau = data['user_id'].nunique()
print("游戏的DAU是:", dau)

2. 用户等级分布

为了回答第二个问题,我们可以使用以下代码来绘制用户等级分布图:

level_counts = data['level'].value_counts()
plt.figure(figsize=(10,5))
sns.barplot(level_counts.index, level_counts.values, alpha=0.8)
plt.title('用户等级分布')
plt.ylabel('用户数量', fontsize=12)
plt.xlabel('等级', fontsize=12)
plt.show()

3. 付费率

为了回答第三个问题,我们可以使用以下代码计算游戏的付费率:

paying_users = data[data['revenue'] > 0]['user_id'].nunique()
total_users = data['user_id'].nunique()
paying_rate = paying_users / total_users
print("游戏的付费率是:", paying_rate)

4. 收入情况

为了回答第四个问题,我们可以使用以下代码计算游戏的收入情况:

revenue = data['revene'].sum()
spend = data['spend'].sum()
plt.figure(figsize=(5,5))
labels = ['总收入', '总支出']
sizes = [revenue, spend]#[Python学习交流群:748989764]
colors = ['#99ff99', '#ff9999']
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
plt.axis('equal')
plt.show()

5. 付费用户的ARPU

为了回答第五个问题,我们可以使用以下代码计算付费用户的ARPU:

paying_users = data[data['revenue'] > 0]['user_id'].nunique()
total_revenue = data['revenue'].sum()
arpu = total_revenue / paying_users
print("付费用户的ARPU是:", arpu)

相关文章:

Python+ChatGPT实战之进行游戏运营数据分析

文章目录一、数据二、目标三、解决方案1. DAU2. 用户等级分布3. 付费率4. 收入情况5. 付费用户的ARPU最近ChatGPT蛮火的,今天试着让ta写了一篇数据分析实战案例,大家来评价一下!一、数据 您的团队已经为您提供了一些游戏数据,包括…...

Java每日一练(20230313)

目录 1. 字符串统计 ★ 2. 单词反转 ★★ 3. 俄罗斯套娃信封问题 ★★★ 🌟 每日一练刷题专栏 C/C 每日一练 ​专栏 Python 每日一练 专栏 Java 每日一练 专栏 1. 字符串统计 编写一个程序,对于输入的一段英语文本,可以统计&#…...

国内ChatGPT日趋成熟后,可以优先解决的几个日常小问题

现在ChatGPT的发展可谓如日中天,国内很多大的公司例如百度、京东等也开始拥抱新技术,推出自己的应用场景,但可以想象到的是,他们必定利用这个新技术在巩固自己的现有应用场景,比如某些客服,你都不用想&…...

业内人士真心话,软件测试是没有前途的,我慌了......

我在测试行业爬模滚打7年,从点点点的功能测试到现在成为高级测试,工资也翻了几倍。个人觉得,测试的前景并不差,只要自己肯努力。 我刚出来的时候是在鹅厂做外包的功能测试,天天点点点,很悠闲,点…...

哈佛与冯诺依曼结构

1. 下图是典型的冯诺依曼结构 2. CPU分为三部分:ALU运算单元,CU控制单元,寄存器组。 3. 分析51单片机为何能使用汇编进行编程 51指令集(Instruction Set)是单片机CPU能够执行的所有指令的集合。在编写51单片机程序时&a…...

传输安全HTTPS

为什么要有 HTTPS 为什么要有 HTTPS?简单的回答是:“因为 HTTP 不安全”。HTTP 怎么不安全呢? 通信的消息会被窃取,无法保证机密性(保密性):由于 HTTP 是 “明文” 传输,整个通信过…...

Docker--(六)--Docker资源限制

前言系统压力测试Cpu资源限制Mem资源限制IO 资源限制【扩展】 1.前言 在使用 Docker 运行容器时,一台主机上可能会运行几百个容器,这些容器虽然互相隔离,但是底层却使用着相同的 CPU、内存和磁盘资源。如果不对容器使用的资源进行限制&#x…...

消息队列总结及案例

文章目录python内置队列先进先出的队列Queue分布式队列rabbitmqrocketmqredis list 队列python内置队列 标准库queue提供Queue队列、LifoQueue栈、PriorityQueue优先级队列用于单机的生产者、消费者缓冲队列; 生产者,生产消息的进程或线程&#xff1b…...

通过WiFi连接adb调试

通过WiFi连接adb调试 解决 cannot connect to 192.168.1.136:5555: 由于目标计算机积极拒绝,无法连接。 (10061) 解决办法1 (Windows下cmd环境执行) 1.连接USB数据线,打开USB调试 使用windows的“运行”命令行方式:&a…...

【蓝桥杯-筑基篇】常用API 运用(1)

🍓系列专栏:蓝桥杯 🍉个人主页:个人主页 目录 🍍1.输入身份证,判断性别🍍 🍍2.输入英语句子,统计单词个数🍍 🥝3.加密解密🥝 🌎4.相邻重复子串…...

想要成为高级网络工程师,只需要具备这几点

首先,成为高级网络工程师的目的,就是为了搞钱。高级网络工程师肯定是不缺钱的,但成为高级网络工程师你一定要具备以下几点:第一 心态作为一个高级网工,首先你必须情绪要稳定,在碰到重大故障的时候不慌&…...

c++ 每日十问3-处理数据

1.为什么 C有多种整型? 解析: C语言中包含多种整数类型,主要包括 short、int、long 和 long long 这4种,每一种还分别包含有符号类型和无符号类型(unsigned)。此外,char 类型也可以看作一种小整数类型。C语言中这些整数类型的主要区别在于存…...

【MySQL】实验一 数据定义

目录 1. 表定义:创建工程项目表 2. 表定义:创建供应商表 3. 表定义:创建供应情况表 4. 表定义:创建零件表 5. 表定义:创建student表 6. 表定义:创建course表 7. 表定义:创建sc表 8.…...

17.电话号码的字母组合(深度递归遍历解决经典老题)

前文C深度递归遍历解决"电话号码的字母组合问题",本题考察的比较全面,考察到vector的使用,深度遍历以及递归的熟练度,希望能对铁子们有所帮助一,题目链接:https://leetcode.cn/problems/letter-c…...

Python 基础教程【1】:Python介绍、变量和数据类型、输入输出、运算符

本文已收录于专栏🌻《Python 基础》文章目录1、Python 介绍2、变量和数据类型2.1 注释的使用2.2 变量以及数据类型2.2.1 什么是变量?2.2.2 怎么给变量起名?2.2.3 变量的类型🎨 整数 int🎨 浮点数(小数&…...

【RPC】Apache Thrift系列详解 - 概述与入门

文章目录前言正文Thrift的技术栈Thrift的特性(一) 开发速度快(二) 接口维护简单(三) 学习成本低(四) 多语言/跨语言支持(五) 稳定/广泛使用Thrift的数据类型Thrift的协议Thrift的传输层Thrift的服务端类型Thrift入门示例(一) 编写Thrift IDL文件(二) 新建Maven工程总结前言 Th…...

class03:MVVM模型与响应式原理

目录一、MVVM模型二、内在1. 深入响应式原理2. Object.entries3. 底层搭建一、MVVM模型 MVVM,即Model 、View、ViewModel。 Model > data数据 view > 视图(vue模板) ViewModel > vm > vue 返回的实例 > 控制中心, 负责监听…...

[Spring学习]08 @Resource和@Autowired注解的区别

目录前言一、Resource和Autowired注解的身世1、Resource注解2、Autowired注解3、常见的三种依赖注入方式及区别1. Filed注入2. Setter注入3. Constructor注入4. 三种依赖注入方式的区别二、Resource和Autowired注解的区别三、Resource和Autowired注解的推荐用法前言 当我们在属…...

前端开发神器VS Code安装教程

✅作者简介:CSDN一位小博主,正在学习前端 📃个人主页:白月光777的CSDN博客 💬个人格言:但行好事,莫问前程 安装VS CodeVS Code简介VS Code安装VS Code汉化结束语💡💡&…...

【Hive进阶】-- Hive SQL、Spark SQL和 Hive on Spark SQL

1.Hive SQL 1.1 基本介绍概念Hive由Facebook开发,用于解决海量结构化日志的数据统计,于2008年贡献给 Apache 基金会。Hive是基于Hadoop的数据仓库工具,可以将结构化数据映射为一张表,提供类似SQL语句查询功能本质:将Hi…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...