YOLOv10改进 | Conv篇 | CVPR2024最新DynamicConv替换下采样(解决低FLOPs陷阱)
一、本文介绍
本文给大家带来的改进机制是CVPR2024的最新改进机制DynamicConv其是CVPR2024的最新改进机制,这个论文中介绍了一个名为ParameterNet的新型设计原则,它旨在在大规模视觉预训练模型中增加参数数量,同时尽量不增加浮点运算(FLOPs),所以本文的DynamicConv被提出来了,使得网络在保持低FLOPs的同时增加参数量,从而允许这些网络从大规模视觉预训练中获益,下面的图片为V10n和利用了DynamicConv的训练精度对比图,本文内容包含详细教程 + 代码 + 原理介绍。
欢迎大家订阅我的专栏一起学习YOLO!

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备
目录
一、本文介绍
二、原理介绍
三、核心代码
四、手把手教你添加DynamicConv机制
4.1 修改一
4.2 修改二
4.3 修改三
4.4 修改四
五、DynamicConv的yaml文件和运行记录
5.1 DynamicConv的yaml文件1
5.2 DynamicConv的yaml文件2
5.3 训练代码
5.4 DynamicConv的训练过程截图
五、本文总结
二、原理介绍

官方论文地址: 官方论文地址点击此处即可跳转
官方代码地址: 官方代码地址点击此处即可跳转
动态卷积(Dynamic Convolution)是《DynamicConv.pdf》中提出的一种关键技术,旨在增加网络的参数量而几乎不增加额外的浮点运算(FLOPs)。以下是关于动态卷积的主要信息和原理:
主要原理:
1. 动态卷积的定义:
动态卷积通过对每个输入样本动态选择或组合不同的卷积核(称为"experts"),来处理输入数据。这种方法可以视为是对传统卷积操作的扩展,它允许网络根据输入的不同自适应地调整其参数。
2. 参数和计算的动态化:
在动态卷积中,不是为所有输入使用固定的卷积核,而是有多个卷积核(或参数集),并且根据输入的特性动态选择使用哪个核。
这种选择通过一个学习得到的函数(例如,使用多层感知机(MLP)和softmax函数)来动态生成控制各个卷积核贡献的权重。
3. 计算过程:
给定输入特征,和一组卷积核
,每个核对应一个专家。
每个专家的贡献由一个动态系数 控制,这些系数是针对每个输入样本动态生成的。
输出是所有动态选定的卷积核操作的加权和:
其中表示卷积操作,
是通过一个小型网络(如MLP)动态计算得出的,这个小网络的输入是全局平均池化后的特征。
动态卷积的优点:
- 参数效率高:通过共享和动态组合卷积核,动态卷积可以在增加极少的计算成本的情况下显著增加模型的参数量。
- 适应性强:由于卷积核是针对每个输入动态选择的,这种方法可以更好地适应不同的输入特征,理论上可以提高模型的泛化能力。
- 资源使用优化:动态卷积允许模型在资源有限的环境中(如移动设备)部署更复杂的网络结构,而不会显著增加计算负担。
动态卷积的设计思想突破了传统卷积网络结构的限制,通过动态调整和优化计算资源的使用,实现了在低FLOPs条件下提升网络性能的目标,这对于需要在计算资源受限的设备上运行高效AI模型的应用场景尤为重要。
三、核心代码
本节核心代码的使用方式看章节四!
import torch.nn as nn
import torch.nn.functional as F
import torch
from timm.layers import CondConv2d__all__ = ['C2f_DynamicConv', 'DynamicConv']def autopad(k, p=None, d=1): # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU() # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class DynamicConv(nn.Module):""" Dynamic Conv layer"""def __init__(self, in_features, out_features, kernel_size=1, stride=1, padding='', dilation=1,groups=1, bias=False, num_experts=4):super().__init__()# print('+++', num_experts)self.routing = nn.Linear(in_features, num_experts)self.cond_conv = CondConv2d(in_features, out_features, kernel_size, stride, padding, dilation,groups, bias, num_experts)def forward(self, x):pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) # CondConv routingrouting_weights = torch.sigmoid(self.routing(pooled_inputs))x = self.cond_conv(x, routing_weights)return xclass Bottleneck_DynamicConv(nn.Module):# Standard bottleneck with DCNdef __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expandsuper().__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = DynamicConv(c_, c2, k[1], 1, groups=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C2f_DynamicConv(nn.Module):# CSP Bottleneck with 2 convolutionsdef __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck_DynamicConv(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))def forward(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))if __name__ == "__main__":# Generating Sample imageimage_size = (1, 64, 224, 224)image = torch.rand(*image_size)# Modelmodel = C2f_DynamicConv(64, 64)out = model(image)print(out.size())
四、手把手教你添加DynamicConv机制
4.1 修改一
第一还是建立文件,我们找到如下ultralytics/nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。

4.2 修改二
第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。

4.3 修改三
第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)!
从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!
4.4 修改四
按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。
五、DynamicConv的yaml文件和运行记录
5.1 DynamicConv的yaml文件1
仅替换原先的Conv模块!
此版本训练信息:YOLOv10n-DynamicConv-1 summary: 385 layers, 2896642 parameters, 2896626 gradients, 7.8 GFLOPs
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, DynamicConv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, DynamicConv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 1, PSA, [1024]] # 10# YOLOv10.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 16 (P3/8-small)- [-1, 1, DynamicConv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 19 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
5.2 DynamicConv的yaml文件2
替换所有的下采样模块,包括YOLOv10自带的SCDown.
此版本训练信息:YOLOv10n-DynamicConv-2 summary: 370 layers, 4898318 parameters, 4898302 gradients, 7.6 GFLOPs
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, DynamicConv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, DynamicConv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, DynamicConv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, DynamicConv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 1, PSA, [1024]] # 10# YOLOv10.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 16 (P3/8-small)- [-1, 1, DynamicConv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 19 (P4/16-medium)- [-1, 1, DynamicConv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
5.3 训练代码
大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')# model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data=r'替换数据集yaml文件地址',# 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, posecache=False,imgsz=640,epochs=150,single_cls=False, # 是否是单类别检测batch=4,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGD# resume='', # 如过想续训就设置last.pt的地址amp=False, # 如果出现训练损失为Nan可以关闭ampproject='runs/train',name='exp',)
5.4 DynamicConv的训练过程截图

五、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~
专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备
相关文章:
YOLOv10改进 | Conv篇 | CVPR2024最新DynamicConv替换下采样(解决低FLOPs陷阱)
一、本文介绍 本文给大家带来的改进机制是CVPR2024的最新改进机制DynamicConv其是CVPR2024的最新改进机制,这个论文中介绍了一个名为ParameterNet的新型设计原则,它旨在在大规模视觉预训练模型中增加参数数量,同时尽量不增加浮点运算&#x…...
变革设计领域:Transformer模型在智能辅助设计中的革命性应用
变革设计领域:Transformer模型在智能辅助设计中的革命性应用 在人工智能技术的推动下,智能辅助设计(Intelligent Assisted Design, IAD)正逐渐成为现实。Transformer模型,以其卓越的处理序列数据的能力,为…...
Spring——配置说明
1. 别名 别名:如果添加了别名,也可以使用别名获取这个对象 <alias name"user" alias"user2"/> 2. Bean的配置 id:bean 的唯一标识符,也就是相当于我们学的对象名class:bean 对象所对应的…...
禁用华为小米?微软中国免费送iPhone15
微软中国将禁用华为和小米手机,要求员工必须使用iPhone。如果还没有iPhone,公司直接免费送你全新的iPhone 15! 、 这几天在微软热度最高的话题就是这个免费发iPhone,很多员工,收到公司的通知。因为,登录公司…...
nginx初理解
没有ngix时,有两台服务器,供访问 1. 现在有两台服务器上同样的路径下都放了一个, 都能通过ip加端口访问到页面 后端项目 (查看tomcat中的配置中的 server.xml,能找到项目路径) tomacat 也都有 两个…...
FreeCAD源码分析:属性系统
按照面向对象设计(Object-Oriented Design, OOD)的信条,OOD大体上包括两方面的内涵:一方面,需要将业务数据抽象成(树状/层状)数据对象,这就是所谓的数据对象模型(Data Object Model);另一方面就是职责的分摊与聚合&…...
C++入门 模仿mysql控制台输出表格
一、 说明 控制台输出表格,自适应宽度 二、 源码 #include <iostream> #include <map> #include <string> #include <vector>using namespace std;void printTable(vector<vector<string>> *pTableData) {int row pTableDa…...
SpringBoot新手快速入门系列教程五:基于JPA的一个Mysql简单读写例子
现在我们来做一个简单的读写Mysql的项目 1,先新建一个项目,我们叫它“HelloJPA”并且添加依赖 2,引入以下依赖: Spring Boot DevTools (可选,但推荐,用于开发时热部署)Lombok(可选,…...
开源大势所趋
一、开源项目的发展趋势 技术栈多样化与专业化:随着技术的不断进步,开源项目涵盖了从云计算、大数据、人工智能到区块链、物联网等各个领域,技术栈日益丰富和专业化。这种趋势使得开发者能够根据自己的需求选择最适合的技术工具,促…...
智能无人机飞行控制系统:基于STM32的设计与实现(内附资料)
摘要 智能无人机的飞行控制系统是确保无人机安全、高效运行的核心。本文将探讨基于STM32微控制器的智能无人机飞行控制系统的设计与实现,包括系统架构、关键组件选择、控制算法开发以及代码实现。 1. 引言 智能无人机在军事侦察、物流配送、环境监测等多个领域展…...
centos磁盘空间满了-问题解决
报错问题解释: CentOS系统在运行过程中可能会出现磁盘空间不足的错误。这通常发生在以下几种情况: 系统日志文件或临时文件过大导致磁盘空间不足。 安装了大量软件或文件而没有清理无用文件。 有可能是某个进程占用了大量磁盘空间。 问题解决方法&a…...
宝塔:如何开启面板ssl并更新过期ssl
1、登录宝塔面板 > 前往面板设置 > 最上方的安全设置 > 面板SSL > 面板SSL配置 打开后先查看自签证书的时间,如果时间是已经过期的,就前往这个目录,将该目录下所有文件都删掉 重新回到面板SSL配置的位置,打开后会看到…...
大白话讲解AI大模型
大白话讲解大模型 大模型的发展重要大模型发展时间线 大模型的简单原理-训练⼤模型是如何训练并应⽤到场景中的?如果训练私有化模型 模型:model 语料库:用于训练模型的数据 大模型的发展 详细信息来源:DataLearner 2022年11月底…...
pandas+pywin32操作excel办公自动化
import pandas as pd import re import win32com.client as win32 from win32com.client import constants import os import os.path as osp #读取表格 pathos.getcwd() fposp.join(path,fuck_demo.xlsx) dfpd.read_excel(fp,header1,usecols[序号,光缆段落名(A端…...
防火墙(ensp USG6000v)---安全策略 + 用户认证综合实验
一. 题目 1) 拓扑 2)要求 1. DMZ区内的服务器,办公区仅能在办公时间内(9:00 -- 18: 00)可以访问,生产区的设备全天可以访问 2.生产区不允许访问互联网,办公区和游客区允许访问互联网 3.办公区设备10.0.2.10不充许…...
Java使用POI导出后数字类型为常规类型,不能计算
今日日常撸码,甲方提出来excel导出后,数字类型那一列是常规类型,并不是数字,无法进行计算,如下图: 这里和导出的字段类型有关,我用的是POI进行excel的导出,需要在实体类上标注出需要…...
项目进度管理(5-1)常见的缓冲区监控方法
缓冲区监控是一种项目管理技术,主要用于关键链项目管理系统(Critical Chain Project Management, CCPM)中。它的核心理念是识别和管理项目中的不确定性和依赖性,以提高项目完成的可靠性。 缓冲区监控方法主要是针对项目进度计划执…...
构造函数语意学(The Semantics of Constructors)
1、“Default Constructor” 的构造操作 下面4种情况编译器会生成默认构造函数: 成员类对象带有默认构造函数父类带有默认构造函数带有虚表的类带有虚基类的类 1.1、 成员类对象带有默认构造函数 如果一个类没有任何构造函数,但它的一个成员对象带有…...
香橙派5plus上跑云手机方案二 waydroid
前言 上篇文章香橙派5plus上跑云手机方案一 redroid(带硬件加速)说了怎么跑带GPU加速的redroid方案,这篇说下怎么在香橙派下使用Waydroid。 温馨提示 虽然能运行,但是体验下来只能用软件加速,无法使用GPU加速,所有会很卡。而且…...
600Kg大载重起飞重量多旋翼无人机技术详解
600Kg大载重起飞重量的多旋翼无人机是一种高性能的无人驾驶旋翼飞行器,具有出色的载重能力和稳定的飞行特性。该无人机采用先进的飞行控制系统和高效的动力系统,能够满足各种复杂任务的需求,广泛应用于物资运输、应急救援、森林防火等领域。 …...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
