当前位置: 首页 > news >正文

等保测评视角下的哈尔滨智慧城市安全框架构建

随着智慧城市的兴起,哈尔滨作为东北地区的重要城市,正在积极探索和实践智慧城市安全框架的构建,以确保在数字化转型的过程中,既能享受科技带来的便利,又能有效防范和应对各类网络安全风险。

本文将从等保测评的视角出发,探讨哈尔滨智慧城市安全框架的构建策略,旨在为哈尔滨及其他城市提供智慧城市建设的安全指引。

一、等保测评在智慧城市安全中的地位等保测评,即信息安全等级保护测评,是国家推行的一种信息系统安全保护制度,要求不同级别的信息系统应达到相应的安全保护要求。在智慧城市领域,等保测评不仅是一种合规要求,更是确保城市信息基础设施安全、保护市民隐私、维护社会稳定的关键手段。

二、哈尔滨智慧城市安全框架构建原则1. 合规性原则:严格遵守国家法律法规及行业标准,确保智慧城市建设的安全合规性。

2. 全面性原则:覆盖物理、网络、主机、应用、数据等各个层面,构建全方位的安全防护体系。

3. 动态性原则:面对不断变化的网络安全威胁,安全框架需具备灵活性和可扩展性,能够及时调整和优化。

4. 风险导向原则:基于风险评估结果,优先保障关键信息基础设施的安全,合理分配安全资源。

三、哈尔滨智慧城市安全框架构建策略

1. 等保定级与安全目标设定根据《网络安全法》及相关标准,对哈尔滨智慧城市中的各项系统进行等保定级,明确各系统的安全保护等级,设定清晰的安全目标。

2. 构建多层次防御体系

• 物理安全:加强数据中心、机房等物理设施的安全防护,包括环境监控、出入控制、防灾减灾等措施。

• 网络安全:部署防火墙、入侵检测系统、虚拟专用网络(VPN)等,保障网络边界安全。• 主机安全:实施操作系统安全加固,定期进行漏洞扫描和补丁更新。

• 应用安全:采用安全编码规范,实施代码审查,确保应用程序的安全性。• 数据安全:实施数据分类分级管理,采用加密技术,确保数据在传输和存储过程中的安全性。

3. 安全管理制度建设• 安全政策与程序:制定明确的安全政策,包括访问控制、密码管理、数据保护等。

• 安全培训与意识提升:定期开展安全培训,提升员工的安全意识。• 应急响应机制:建立安全事件报告和响应流程,确保在发生安全事件时能够迅速应对。

4. 定期评估与持续改进• 等保测评:定期进行等保测评,评估安全措施的有效性,及时发现和解决安全问题。

• 持续优化:根据测评结果和安全趋势,持续优化安全框架,保持其先进性和有效性。四、哈尔滨智慧城市安全框架构建的特色与成效哈尔滨在构建智慧城市安全框架的过程中,充分考虑了东北地区的特殊环境条件,如极端天气对物理安全的影响,以及冰雪旅游季对智慧警务和数据安全的需求。通过创新运用大数据、云计算、人工智能等技术,哈尔滨在智慧交通、智慧旅游、智慧警务等领域取得了显著成效,构建了稳固的智慧城市安全生态。

结语哈尔滨智慧城市安全框架的构建是一个系统工程,需要政府、企业和市民的共同努力。通过等保测评的引导,哈尔滨正在逐步建立起一套既符合国家标准又适应本地特色的智慧城市安全体系,为城市的可持续发展和居民的美好生活提供坚实的保障。

未来,随着技术的不断进步和安全威胁的演变,哈尔滨将继续深化等保测评的应用,不断创新和完善智慧城市安全框架,为全国乃至全球的智慧城市建设提供可借鉴的经验和模式。

相关文章:

等保测评视角下的哈尔滨智慧城市安全框架构建

随着智慧城市的兴起,哈尔滨作为东北地区的重要城市,正在积极探索和实践智慧城市安全框架的构建,以确保在数字化转型的过程中,既能享受科技带来的便利,又能有效防范和应对各类网络安全风险。 本文将从等保测评的视角出…...

Java中的数据缓存技术及其应用

Java中的数据缓存技术及其应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在现代应用程序中,数据缓存是一种重要的技术手段,用于提…...

SQL 索引

一、索引的基本概念 **索引(Index)**是数据库中一种特殊的数据结构,用于帮助数据库管理系统(DBMS)快速访问数据表中的特定信息。索引类似于书籍的目录,可以加快数据检索的速度。 二、索引的作用 提高查询…...

free第一次成功,第二次失败

问题描述: 在一个函数中存在free,第一次进入此函数没有问题,但是第二次出错 strncpy(pdd_all_data[i].sensor_name,white_list[j].dev_name,strlen(pdd_all_data[i].sensor_name)); 上面代码都是使用strncpy不小心导致double free or corrup…...

各种音频处理器

在HiFi(高保真)音频系统中,通常需要使用一些特定类型的音频处理器,以确保音频信号的高保真和优质输出。以下是一些常见的音频处理器类型及其在HiFi系统中的应用: DAC(数模转换器): …...

深度学习探秘:Transformer模型跨框架实现大比拼

深度学习探秘:Transformer模型跨框架实现大比拼 自2017年Transformer模型问世以来,它在自然语言处理(NLP)领域引发了一场革命。其独特的自注意力机制为处理序列数据提供了全新的视角。随着深度学习框架的不断发展,Tra…...

京准电钟:云计算中NTP网络时间服务器的作用是什么?

京准电钟:云计算中NTP网络时间服务器的作用是什么? 京准电钟:云计算中NTP网络时间服务器的作用是什么? NTP是一种用于同步网络中设备时间的协议,广泛用于互联网和局域网中。NTP网络时间服务器则是基于NTP协议构建&…...

Apache中使用CGI

Apache24 使用Visual Studio 2022 // CGI2.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 // #include <stdio.h> #include <stdlib.h>#include <stdio.h>void main() {//设置HTML语言printf("Content-type:text/html\n\n&q…...

宏任务与微任务对比【前端异步】

目录 简介微任务与宏任务的基本概念宏任务&#xff08;Macrotasks&#xff09;微任务&#xff08;Microtasks&#xff09;宏任务示例微任务示例微任务与宏任务的执行时序 结论 简介 在JavaScript的异步编程中&#xff0c;理解事件循环&#xff08;Event Loop&#xff09;是至关…...

Autogen和LangGraph对比

AutoGen和LangGraph是两种用于构建多代理AI系统的框架,它们各有特点和优势。以下是对这两个框架的详细对比: 共同点 都支持创建多个AI代理进行协作都可以与大语言模型(LLM)集成都允许定义代理之间的交互流程都支持使用工具和外部资源来增强代理能力 AutoGen的特点 灵活的代…...

uniapp vue3微信小程序如何获取dom元素

在网上很多人说可以通过下面两种形式获取到指定dom元素 // 定义ref <div ref"box"></div>//1通过this.$refs获取dom元素 this.$refs.box//2通过ref(null)获取dom元素 let box ref(null)第一种方式在vue2中是可以获取到的&#xff0c;但是在vue3 setup中…...

Mongodb索引使用限制

学习mongodb&#xff0c;体会mongodb的每一个使用细节&#xff0c;欢迎阅读威赞的文章。这是威赞发布的第85篇mongodb技术文章&#xff0c;欢迎浏览本专栏威赞发布的其他文章。如果您认为我的文章对您有帮助或者解决您的问题&#xff0c;欢迎在文章下面点个赞&#xff0c;或者关…...

阿里云通义千问开源两款语音基座模型分别是SenseVoice和CosyVoice

阿里巴巴近期发布了开源语音大模型项目FunAudioLLM&#xff0c;该项目包含了两个核心模型&#xff1a;SenseVoice和CosyVoice。可以精准多语言识别并且进行语音克隆。 SenseVoice&#xff1a;精准多语言识别与情感辨识 SenseVoice主要致力于高精度多语言语音识别、情感辨识和…...

第11章 规划过程组(二)(11.10制订进度计划)

第11章 规划过程组&#xff08;二&#xff09;11.10制订进度计划&#xff0c;在第三版教材第402~404页&#xff1b; 文字图片音频方式 第一个知识点&#xff1a;主要输出 1、进度基准 经过批准的进度模型&#xff0c;只有通过正式的变更控制程序才能进行变更&#xff0c;用作…...

如何在Spring Boot中集成Hibernate

如何在Spring Boot中集成Hibernate 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将探讨如何在Spring Boot项目中集成Hibernate。Hibernate是一个广泛…...

Grind 75 | 3. merge two sorted lists

Leetcode 21. 合并两个有序链表 题目链接 思路&#xff1a; 和归并排序中 merge 部分一致 两个指针分别指向 2 个链表头每次选小的那个加入 res 中&#xff0c;对应指针后移一位;重复步骤2&#xff0c;直至一个指针到链表末尾将另一个剩余的全部 copy 到 res 中&#xff0c;链…...

MyBatis(35)如何在 MyBatis 中实现软删除

实现软删除在MyBatis中通常意味着更新数据库记录的某个字段&#xff0c;而不是真正地从数据库中删除记录。这个字段&#xff08;通常是is_deleted、deleted或status等&#xff09;被用来标记记录是否被删除。下面我们将详细探讨如何在MyBatis中实现软删除&#xff0c;包括数据库…...

C# 预处理器指令

C# 预处理器指令 概述 C# 预处理器指令是编译器在编译代码之前处理的指令。这些指令用于控制编译过程,包括条件编译、编译指令的定义和取消等。预处理器指令以 # 开头,不包含在代码的执行逻辑中,仅在编译阶段起作用。 常用的预处理器指令 1. #define 和 #undef #define…...

Perl编译器架构:前端与后端的精细分工

&#x1f527; Perl编译器架构&#xff1a;前端与后端的精细分工 Perl作为一种高级、通用的编程语言&#xff0c;其编译器的架构设计对于性能和灵活性至关重要。Perl编译器由前端和后端组成&#xff0c;它们各自承担着不同的职责。本文将深入解析Perl编译器前端和后端的区别&a…...

14-63 剑和诗人37 - 分布式系统中的数据访问设计

​​ 在分布式系统中,跨服务和数据库提供统一、可靠的数据访问至关重要,但又极具挑战性。微服务和数据库的拓扑结构为分布、缓存、复制和同步带来了复杂性。 让我们探索有助于解决这些复杂性并简化构建强大、高性能分布式系统的常见数据访问模式。 概述 我们将通过示例介绍…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...