深度学习中的正则化技术 - 数据集增强篇
序言
在机器学习与深度学习的广阔领域中,数据集的质量与规模往往是决定模型性能的关键因素之一。然而,现实世界中高质量、标注完善的数据集往往稀缺且获取成本高昂,这成为了制约算法进步的一大瓶颈。为了缓解这一问题,数据集增强技术应运而生。该技术旨在通过一系列变换手段,在不实质性改变数据本质特征的前提下,人工增加数据集的多样性和数量,从而提升模型的泛化能力和鲁棒性。从简单的图像旋转、缩放,到复杂的颜色变换、噪声添加,乃至基于深度学习的对抗性生成,数据集增强技术为模型的训练提供了丰富的“养分”,使得模型能够学习到更加全面、稳定的知识表示。
数据集增强
- 让机器学习模型泛化得更好的最好办法是使用更多的数据进行训练。
- 当然,在实践中,我们拥有数据量是有限的。解决这个问题的一种方法是创建假数据并把它添加到训练集。对于一些机器学习任务,创建新的假数据相当简单。
- 对分类来说这种方法是最简单的。
- 分类器需要一个复杂的高维输入 x \boldsymbol{x} x,并用单个类别标识 y y y概括 x \boldsymbol{x} x。
- 这意味着分类面临的一个主要任务是要对各种各样的变换保持不变。
- 我们可以轻易通过转换训练集中的 x \boldsymbol{x} x来生成新的 ( x , y ) (\boldsymbol{x},y) (x,y)对。
- 这种方法对于其他许多任务来说并不那么容易。例如,除非我们已经解决了密度估计问题,否则在密度估计任务中生成新的假数据是困难的。
- 数据集增强对一个具体的分类问题来说是特别有效的方法。例如:对象识别。
- 图像是高维的并包括各种巨大的变化因素,其中有许多可以轻易地模拟。
- 即使模型已使用卷积和池化技术对部分平移保持不变,沿训练图像每个方向平移几个像素的操作通常可以大大改善泛化。
- 许多其他操作如旋转图像或缩放图像也已被证明非常有效。
- 我们必须要小心,不能应用改变正确类别的转换。
- 例如,光学字符识别任务需要认识到“b”和“d”以及“6”和“9”的区别,所以对这些任务来说,水平翻转和旋转 18 0 ∘ 180^{\circ} 180∘并不是适当的数据集增强方式。
- 能保持我们希望的分类不变,但不容易执行的转换也是存在的。例如,平面外绕轴转动难以通过简单的几何运算在输入像素上实现。
- 数据集曾倩对语音识别任务也是有效的 (Jaitly and Hinton, 2013)。
- 在神经网络的输入层注入噪声 (Sietsma and Dow, 1991) 也可以被看作是数据增强的一种形式。对于许多分类甚至一些回归任务,即使小的随机噪声被加到输入,任务仍应该是能解决的。
- 然而,神经网络被证明对噪声不是非常健壮 (Tangand Eliasmith, 2010)。
- 改善神经网络健壮性的方法之一是简单地将随机噪声施加到输入再进行训练。
- 输入噪声注入是一些无监督学习算法的一部分,如去噪自编码器(Vincent et al., 2008a)。
- 向隐藏单元施加噪声也是可行的,这可以被看作在多个抽象层上进行的数据集增强。
- Poole et al. (2014) 最近表明,噪声的幅度被细心调整后,该方法是非常高效的。 Dropout \text{Dropout} Dropout(一个强大的正则化策略),可以被看作通过乘性噪声构建新输入的过程。
- 当比较机器学习基准测试的结果时,考虑其采取的数据集增强是很重要的。
- 通常情况下,人工设计的数据集增强方案可以大大减少机器学习技术的泛化误差。
- 将一个机器学习算法的性能与另一个进行对比时,对照实验是必要的。
- 当比较机器学习算法A和机器学习算法B时,应该确保这两个算法使用同一人工设计的数据集增强方案进行评估。
- 假设算法A在没有数据集增强时表现不佳,而B结合大量人工转换的数据后表现良好。
- 在这样的情况下,很可能是合成转化引起了性能改进,而不是机器学习算法B。
- 有时候,确定实验是否已经适当控制需要主观判断。例如,向输入注入噪声的机器学习算法是执行数据集增强的一种形式。
- 通常,普适操作(例如,向输入添加高斯噪声)被认为是机器学习算法的一部分,而特定于一个应用领域(如随机地裁剪图像)的操作被认为是独立的预处理步骤。
总结
综上所述,数据集增强作为机器学习领域的一项重要技术,通过巧妙地利用现有数据资源,有效缓解了高质量数据集稀缺的问题。它不仅丰富了训练样本的多样性,减少了过拟合的风险,还显著提升了模型的泛化能力,使得训练出的模型能够更好地适应复杂多变的实际应用场景。随着技术的不断进步,数据集增强的手段日益丰富和高效,未来必将在推动人工智能技术的发展中发挥更加重要的作用。
往期内容回顾
深度学习中的正则化技术 - 引言篇
深度学习中的正则化技术 - 参数范数惩罚篇
深度学习中的正则化技术 - 正则化和欠约束问题篇
相关文章:
深度学习中的正则化技术 - 数据集增强篇
序言 在机器学习与深度学习的广阔领域中,数据集的质量与规模往往是决定模型性能的关键因素之一。然而,现实世界中高质量、标注完善的数据集往往稀缺且获取成本高昂,这成为了制约算法进步的一大瓶颈。为了缓解这一问题,数据集增强…...
【Docker系列】Docker 镜像源:优化你的容器化开发流程
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
【Linux】Windows环境下配置虚拟机静态IP
当前我们虚拟机的Linux操作系统,其IP地址是通过DHCP服务获取的。 DHCP:动态获取IP地址,即每闪重启设备后都会获取一次,可能导致IP地址频繁变更 原因1:办公电脑IP地址变化无所谓,但是我们要远程连接到Linux系统&#x…...
完美解决AttributeError: ‘list‘ object has no attribute ‘shape‘的正确解决方法,亲测有效!!!
完美解决AttributeError: ‘list‘ object has no attribute ‘shape‘的正确解决方法,亲测有效!!! 亲测有效 完美解决AttributeError: ‘list‘ object has no attribute ‘shape‘的正确解决方法,亲测有效࿰…...
链接服务器“XX”的OLEDB访问接口“MSOLEDBSQL”返回了消息“登录超时已过期” 解决方法
目录 1. 问题所示2. 原理分析3. 解决方法1. 问题所示 出现如下问题: 与链接服务器的测试连接失败。执行Transact-SQL 语句或批处理时发生了异常。命名管道提供程序:无法打开与SQL SERVER的链接[53]链接服务器“XX”的OLEDB访问接口“MSOLEDBSQL”返回了消息“登录超时已过期…...
【AI伦理与社会责任】讨论人工智能在隐私保护、偏见消除、自动化对就业的影响等伦理和社会问题。
人工智能(AI)作为第四次产业革命的核心技术,在推动社会进步和经济发展的同时,也引发了一系列伦理和社会问题。以下从隐私保护、偏见消除以及自动化对就业的影响三个方面进行详细讨论。 一、隐私保护 人工智能技术的广泛应用涉及…...
Qt编程技巧小知识点(1)TCP缓存区数据读取
文章目录 Qt编程技巧小知识点(1)TCP缓存区数据读取小结 Qt编程技巧小知识点(1)TCP缓存区数据读取 TCP的socket对内存进行读取(使用socket->readall())的时候输出的内容有时会进行局部倒置,其…...
vue 搭建 pinia
文章目录 环境设置存储读取数据【 storeToRefs】借助storeToRefs将store中的数据转为ref对象,方便在模板中使用【getters】当state中的数据,需要经过处理后再使用时,可以使用getters配置【$subscribe】通过 store 的 $subscribe() 方法侦听 s…...
什么是CLR
CLR,全称为Common Language Runtime,即公共语言运行时,是微软为.NET产品构建的运行环境,与Java的JVM(Java虚拟机)类似,可以看作是.NET的虚拟机。CLR的主要作用和特点如下: 主要作用…...
Spring MVC -01
Spring 的 MVC 框架 Spring的MVC框架是Spring框架的一部分,它提供了用于开发Web应用程序的一组组件和设计模式。MVC是Model-View-Controller的缩写,是一种设计模式,用于将应用程序的逻辑与用户界面分离。 在Spring的MVC框架中,Mo…...
山海鲸可视化——天地图画面和热力图
山海鲸引入天地图目前只有 iframe 的方式引入 首先我们创建一个文件夹 ——index.html ——index.js ——data.js 大家都是大佬,我就不详细介绍了,上代码都能看得懂 首先是index.html <!DOCTYPE html> <html lang"zh-CN"> <…...
Python 利用pandas处理CSV文件(DataFrame的基础用法)
前面介绍过通过Python标准库中的CSV模块处理CSV文件: Python 利用CSV模块处理数据 相比CSV模块,pandas的功能更加强大,本文将简单介绍如何通过pandas来处理CSV文件。 文章目录 一、pandas简介二、用法示例2.1 读取CSV文件2.1.1 read_csv参数…...
c++ 的(引用)和*(指针)
在C中,&(引用)和*(指针)在函数参数中的使用有各自的特点和用途。下面是它们的具体使用方式以及它们之间的一些区别: 引用(&) 使用方式: 引用作为函数参数时,可…...
人工智能算法工程师(中级)课程6-sklearn机器学习之聚类问题与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程6-sklearn机器学习之聚类问题与代码详解。在机器学习领域,聚类是一种无监督学习方法,旨在将相似的数据点划分为同一类别。sklearn是一个广泛应用于机器学习的Py…...
Objective-C 中的 isa 不再是简单的结构体指针
了解 Objective-C 中的 isa 指针内存结构 在 Objective-C 中,isa 指针是对象和类之间的重要桥梁。它不仅帮助运行时系统识别对象的类型,还参与了一些内存和性能优化。本文将深入讲解 isa 指针的内存结构,包括其在早期和现代实现中的演变。 …...
中介子方程五十二
XXFXXaXnXaXXαXLXyXXWXuXeXKXXiXyXΣXXΣXXVXuXhXXWXηXXiXhXXpXiXXpXXbXXpXXiXpXXhXiXXηXWXXhXuXVXXΣXXΣXyXiXXKXeXuXWXXyXLXαXXaXnXaXXFXXaXnXaXXαXLXyXXWXuXeXKXXiXyXΣXXΣXXVXuXhXXWXηXXiXhXXpXiXXpXXbXXpXXiXpXXhXiXXηXWXXhXuXVXXΣXXΣXyXiXXKXeXuXWXXyXLXαXXa…...
LabVIEW在半导体自动化测试中的应用
半导体制造的复杂性和精密度要求极高,每一个生产步骤都需要严格的控制和监测。自动化测试设备在半导体制造中起到了关键作用,通过精密测量和数据分析,确保产品质量和生产效率。本文介绍如何使用LabVIEW结合研华硬件,开发一个用于半…...
政安晨:【Keras机器学习示例演绎】(五十三)—— 使用 TensorFlow 决策森林进行分类
目录 简介 设置 准备数据 定义数据集元数据 配置超参数 实施培训和评估程序 实验 1:使用原始特征的决策森林 检查模型 实验 2:目标编码决策森林 创建模型输入 使用目标编码实现特征编码 使用预处理器创建梯度提升树模型 训练和评估模型 实验…...
51单片机:电脑通过串口控制LED亮灭(附溢出率和波特率详解)
一、功能实现 1.电脑通过串口发送数据:0F 2.点亮4个LED 二、注意事项 1.发送和接受数据的文本模式 2.串口要对应 3.注意串口的波特率要和程序中的波特率保持一致 4.有无校验位和停止位 三、如何使用串口波特率计算器 1.以本程序为例 2.生成代码如下 void Uar…...
Java中的消息中间件选择与比较
Java中的消息中间件选择与比较 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在分布式系统中,消息中间件是一种关键组件,它能帮助不同…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
