《算法笔记》总结No.6——贪心
一.简单贪心
贪心法是求解一类最优化问题的方法,它总是考虑在当前状态下局部最优(或较优)之后,来使全局的结果达到最优(或较优)的策略。显然,如果采取较优而非最优的策略(最优策略可能不存在或是不易想到),得到的全局结果也无法是最优的。而要获得最优结果,则要求中间的每步策略都是最优的,因此严谨使用贪心法来求解最优化问题需要对采取的策略进行证明。证明的一般思路是使用反证法及数学归纳法,即假设策略不能导致最优解,然后通过一系列推导来得到矛盾,以此证明策略是最优的,最后用数学归纳法保证全局最优。不过对平常使用来说,也许没有时间或不太容易对想到的策略进行严谨的证明(贪心的证明往往比贪本身更难),因此一般来说,如果在想到某个似乎可行的策略之后,并且自己无法举出反例,那么就勇敢地实现它。
1.组个最小数
给定数字0~9各若干个,可以任意顺序排列这些数字,但必须全部使用,且使目标数字尽可能小(当然0不能做首位)比如输入两个0、两个1、三个5和一个8,得到的最小数字就是100155858。
相信大家一下子就可以看出来策略:先从1~9中选择不为0的最小数输出,然后从0~9输出数字,每个数字输出次数为其剩余个数。
策略正确的证明:
- 首先由于所有数字都必须参与组合,因此最后结果的位数是确定的。
- 由于最高位不为0,则选一个尽可能小的数作为首位——最高位定理
- 其余位数也应该从小到大输出~
教材上的实在是太抽象了,好像有点错误,这里博主自己写了一种:
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;int main() { vector<int> V;for(int i=1;i<=10;i++){int temp=0;cin>>temp;V.push_back(temp);}sort(V.begin(),V.end()); //直接排成升序 int flag=0; //标记 for(int i=0;i<=9;i++)if(V[i]!=0){int temp=V[i];V[i]=V[0];V[0]=temp;flag=i;//保存第一个不为0的位置 break; }for(int i=flag+1;i<=9;i++) //找更小的头,直接从flag下一位开始即可,节省时间~ if(V[i]<V[0]&&V[i]!=0){int temp=V[i];V[i]=V[0];V[0]=temp;}for(int i=0;i<=9;i++)cout<<V[i];
}
逻辑上没什么难度,主要是要想清楚~
2.月饼库存
- 输入:第一行输入N和M:N位月饼的种类数目,M位市场对月饼的需求总量;接下来的两行均要输入N个数:第一行的N个数分别对应当前种类的月饼全部卖出后可以挣多少,而第二行的N个数对应当前月饼的总数量~
- 要求输出:在规定需求量下最高收入
试想一下你如果作为老板,会怎么去“贪得无厌”?很明显——只需要在有限的需求量中,尽可能多的卖出单价最贵的月饼,岂不是可以收货最多的营业额?如下博主自己写的一种实现,和教材上的也不太一样:
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;struct mooncake{double num; //总数 double income; //总收入 double price; //单价,需要自己计算
}; int main() {int N,M;cin>>N>>M;vector<mooncake> V;for(int i=1;i<=N;i++) {mooncake temp;V.push_back(temp);}cout<<"请输入数量:"<<endl;for(int i=1;i<=N;i++) {double num=0;cin>>num;V[i-1].num=num;}cout<<"请输入总价:"<<endl;for(int i=1;i<=N;i++) {double income=0;cin>>income;V[i-1].income=income;}for(int i=0;i<=N-1;i++) V[i].price=V[i].income/V[i].num; //计算单价//按单价降序排列!保证贵的尽可能多卖for(int i=0;i<=V.size()-1;i++){for(int j=i;j<=V.size()-1;j++) if(V[j].price>V[i].price) {mooncake temp;temp=V[j];V[j]=V[i];V[i]=temp;}}for(int i=0;i<=V.size()-1;i++)cout<<"单价第"<<(i+1)<<"高的值为:"<<V[i].income<<" "<<V[i].price<<" "<<V[i].num<<endl;for(int i=0;i<=N-1;i++)cout<<V[i].num<<endl; int j=0; //使用的下标 double count=0; //总利润 while(M>0) //当还有需求量时 {double doubt=0;doubt=M-V[j].num; //用M减去当前类型的额总量 if(doubt>=0)//减了以后M还有剩余{M-=V[j].num;//当前种类全部卖出 count+=V[j].income;//直接总价相加 j++;cout<<V[j].num;}else if(doubt<0) //不够减这么多{count+=V[j].price*M;//剩余部分按照单价计算 break; } }cout<<"最高利润值为:"<<count<<endl;return 0;
}
仔细品味上述中的whlie循环:当M还不为0时——即还有需求量,就卖最贵的月饼。按顺序一个一个卖:如果当前需求量足以卖完当前种类的全部数量,则直接累加总价;如果不足以卖完当前的全部,则有多少卖多少,按照单价计算即可~
我们拿教材的测试用例测试一下:
- 3 20
- 18 15 10
- 75 72 45
结果为94.50,和标准答案一致~
此外这里博主直接把排序写在main函数了,写在独立的函数再调用,对于结构体型的vector好像有点bug,排序不太成功,大家如果知道原因的话可以在评论区写出来~
二.区间贪心
题干如下:
对于这类题目,只需要牢记——优先选择左端点大的区间!
下面来说说为什么要这样做,如上图:不难发现,为了保证尽可能多选,当某个较长的区间包含了较短的区间,我们肯定要先选择最短的区间,这一点很好理解。
而对于上面这种情况,比如1和2这种重叠的区间,不难发现,如果选了左端点最大的1区间,只会占到9号位,而选了2号区间则会占到8号位——这显然不符合贪心尽可能少花钱(少花区间)的思想,因此要选得尽可能靠左,这样右边空的会更多~如上,我们手算可以看出来最多有4个不相交的。
教材上的代码:
#include <cstdio>
#include <algorithm>
using namespace std;const int maxn=110;
struct Inteval{int x,y; //开区间左右端点
}I[maxn]; bool cmp(Inteval a,Inteval b)
{if(a.x!=b.x)return a.x>b.x; //左端点从大到小排序 elsereturn a.y<b.y; //左端点相同的按右端点从小到大排序
}int main() {int n;while(scanf("%d",&n,n!=0)){for(int i=0;i<n;i++)scanf("%d%d",&I[i].x,&I[i].y);sort(I,I+n,cmp); //排序区间 int ans=1,lastX=I[0].x;//ans记录总数,lastX记录上一个被选择的区间的左端点 for(int i=1;i<n;i++){if(I[i].y<=lastX) //如果该区间右端点在lastX左边 {lastX=I[i].x; //以I[i]作为新选中的区间 ans++; //不相交的区间个数+1 } }printf("%d\n",ans); } return 0;
}
不过博主还是不太喜欢原始数组,下面给一种vector结构体版本:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;struct section{int x=0;int y=0;//x和y分别为左右端点
}; int main() {int n=0;vector<section> V;cin>>n;for(int i=1;i<=n;i++) //读入数据 {section temp;int x=0,y=0;cin>>x>>y;if(x>y) //防止左端点大于右端点 {int temp1=x;x=y;y=temp1; }else if(x==y) //若左右端点相同 {i-=1; //则当前输入 不算cout<<"不可以输入相同的左右端点!"<<endl; continue; //舍弃数据,本次循环作废~ } temp.x=x;temp.y=y;V.push_back(temp);}//按要求排序区间优先级 for(int i=0;i<=V.size()-1;i++){for(int j=i+1;j<=V.size()-1;j++){if(V[j].x>V[i].x) //左端点越大越靠前{section temp=V[j];V[j]=V[i];V[i]=temp;}else if(V[j].x==V[i].x&&V[j].y<V[i].y) //左端点相同的话,右端点小的优先 {section temp=V[j];V[j]=V[i];V[i]=temp;} }}cout<<"顺序如下:"<<endl; for(int i=0;i<=V.size()-1;i++)cout<<V[i].x<<"~"<<V[i].y<<endl; int count=1,lastX=V[0].x;//count用来统计总数,lastX是上一个符合条件的区间的左端点for(int i=1;i<=V.size()-1;i++)//直接从第二个区间开始 {if(V[i].y<lastX) //如果当前区间的右端点不和上一个左端点相加,满足题意 {lastX=V[i].x;count++;} } cout<<count<<endl;return 0;
}
测试如下:
总的来说,贪心法是用来解决一类最优化问题,并希望由局部最优策略来推得全局最优结果的算法思想。贪心算法适用的问题一定满足最优子结构的性质,即一个问题的最优解可以由他的子问题的最优解有效地构造出来。显然不是所有问题都适合贪心法,但是这并不妨碍贪心算法成为一个简洁、实用、高效的算法~
相关文章:

《算法笔记》总结No.6——贪心
一.简单贪心 贪心法是求解一类最优化问题的方法,它总是考虑在当前状态下局部最优(或较优)之后,来使全局的结果达到最优(或较优)的策略。显然,如果采取较优而非最优的策略(最优策略可能不存在或是不易想到),得到的全局结果也无法是…...

久期分析与久期模型
目录 一、久期分析的理论原理 二、数据准备 三、Stata 程序代码及解释 四、代码运行结果 一、久期分析的理论原理 久期(Duration)是衡量债券价格对利率变动敏感性的重要指标。它不仅仅是一个简单的时间概念,更是反映了债券现金流回收的平均…...

MybatisPlus 使用教程
MyBatisPlus使用教程 文章目录 MyBatisPlus使用教程1、使用方式1.1 引入依赖1.2 构建mapper接口 2、常用注解2.1 TableName2.2 TableId2.3 TableField MyBatisPlus顾名思义便是对MyBatis的加强版,但两者本身并不冲突(只做增强不做改变): 引入它并不会对原…...

bash: redi-cli: 未找到命令...
问题描述 在执行命令:redi-cli --bigkeys 提示:bash: redi-cli: 未找到命令... 确定服务器是否有Redis进程 ps -ef | grep redis查找Redis 文件信息 find / -name "redis-*"进入到当前目录 cd /usr/bin/再次执行命令 涉及redis-cli 连…...

linux 内核 红黑树接口说明
红黑树(rbtree)在linux内核中使用非常广泛,cfs调度任务管理,vma管理等。本文不会涉及关于红黑树插入和删除时的各种case的详细描述,感兴趣的读者可以查阅其他资料。本文主要聚焦于linux内核中经典rbtree和augment-rbtree操作接口的说明。 1、基本概念 二叉树:每个…...

【ELK】filebeat 和logstash区别
Filebeat 和 Logstash 都是 Elastic Stack (也称为 ELK Stack) 的重要组件,用于日志数据的收集、处理和传输。它们有不同的功能和使用场景: Filebeat 角色: 轻量级日志收集器。功能: 从指定的日志文件中读取日志数据。可以从多个源(如文件、…...

CNN -1 神经网络-概述
CNN -1 神经网络-概述 一:芯片科技发展介绍了解1> 芯片科技发展趋势2> 芯片使用领域3> 芯片介绍1. 神经网络芯片2. 神经网络处理单元NPU(Neural Processing Unit)二:神经网络1> 什么是神经网络2> 神经元3> 人工神经网络三:卷积神经网络(CNN)入门讲解一…...

插片式远程IO模块:Profinet总线耦合器在STEP7配置
XD9000是Profinet总线耦合器,单个耦合器最多可扩展32个I/O模块!本文将深入探讨插片式远程IO模块的应用,并揭秘Profinet总线耦合器在STEP7配置过程中的技巧与注意事项。 STEP7-MicroWINSMART软件组态步骤: 1、按照下图指示安装GSD…...

python3读取shp数据
目录 1 介绍 1 介绍 需要tmp.shp文件和tmp.dbf文件,需要安装geopandas第三方库,python3代码如下, import geopandas as gpdshp_file_path "tmp.shp" shp_data gpd.read_file(shp_file_path) for index, row in shp_data.iterro…...

pytorch实现水果2分类(蓝莓,苹果)
1.数据集的路径,结构 dataset.py 目的: 输入:没有输入,路径是写死了的。 输出:返回的是一个对象,里面有self.data。self.data是一个列表,里面是(图片路径.jpg,标签&…...

Redis实践经验
优雅的Key结构 Key实践约定: 遵循基本格式:[业务名称]:[数据名]:id例:login:user:10长度步超过44字节(版本不同,上限不同)不包含特殊字符 优点: 可读性强避免key冲突方便管理节省内存&#x…...

分类题解清单
目录 简介MySQL题一、聚合函数二、排序和分组三、高级查询和连接四、子查询五、高级字符串函数 / 正则表达式 / 子句 算法题一、双指针二、滑动窗口三、模拟四、贪心五、矩阵六、排序七、链表八、设计九、前缀和十、哈希表十一、字符串十二、二叉树十三、二分查找十四、回溯十五…...

QUdpSocket 的bind函数详解
QUdpSocket 是 Qt 框架中用于处理 UDP 网络通信的类。bind 函数是此类中的一个重要方法,它用于将 QUdpSocket 对象绑定到一个特定的端口上,以便在该端口上接收 UDP 数据包。 函数原型 在 Qt 中,bind 函数的原型通常如下所示: b…...

[spring] Spring MVC - security(下)
[spring] Spring MVC - security(下) callback 一下,当前项目结构如下: 这里实现的功能是连接数据库,大范围和 [spring] rest api security 重合 数据库连接 - 明文密码 第一部分使用明文密码 设置数据库 主要就是…...

数据库数据恢复—SQL Server数据库由于存放空间不足报错的数据恢复案例
SQL Server数据库数据恢复环境: 某品牌服务器存储中有两组raid5磁盘阵列。操作系统层面跑着SQL Server数据库,SQL Server数据库存放在D盘分区中。 SQL Server数据库故障: 存放SQL Server数据库的D盘分区容量不足,管理员在E盘中生…...

spring security的demo
参考: https://juejin.cn/post/6844903502003568647 Spring Security 5.7.0弃用 WebSecurityConfigurerAdapter-CSDN博客 创建 Spring Security 配置类 WebSecurityConfigurerAdapter已被弃用 package com.cq.sc.security.config;import org.springframework.c…...

无需构建工具,快速上手Vue2 + ElementUI
无需构建工具,快速上手Vue2 ElementUI 在前端开发的世界中,Vue.js以其轻量级和易用性赢得了开发者的青睐。而Element UI,作为一个基于Vue 2.0的桌面端组件库,提供了丰富的界面组件,使得构建美观且功能丰富的应用变得…...

通信协议_Modbus协议简介
概念介绍 Modbus协议:一种串行通信协议,是Modicon公司(现在的施耐德电气Schneider Electric)于1979年为使用可编程逻辑控制器(PLC)通信而发表。Modbus已经成为工业领域通信协议的业界标准(De f…...

LabVIEW优化氢燃料电池
太阳能和风能的发展引入了许多新的能量储存方法。随着科技的发展,能源储存和需求平衡的方法也需要不断创新。智慧城市倡导放弃石化化合物,采用环境友好的发电和储能技术。氢气系统和储存链在绿色能源倡议中起着关键作用。然而,氢气密度低&…...

SpringCloudGateway
作用 统一管理,易于监控安全,限流:在网关层就过滤掉非法信息nginx外部网关,gateway内网nginx可以使用Lua或Kong来增强 概念 id:名称随意uri: 被代理的服务地址。id和uri必填,谓词和过滤器非必填谓词:可以…...

Wireshark 对 https 请求抓包并展示为明文
文章目录 1、目标2、环境准备3、Wireshark 基本使用4、操作步骤4.1、彻底关闭 Chrome 进程4.2、配置 SSLKEYLOGFILE [核心步骤]4.3、把文件路径配置到 Wireshark 指定位置4.4、在浏览器发起请求4.5、抓包配置4.6、过滤4.6.1、过滤域名 http.host contains "baidu.com4.6.2…...

如何在Ubuntu环境下使用加速器配置Docker环境
一、安装并打开加速器 这个要根据每个加速器的情况来安装并打开,一般是会开放一个代理端口,比如1087 二、安装Docker https://docs.docker.com/engine/install/debian/#install-using-the-convenience-script 三、配置Docker使用加速器 3.1 修改配置…...

2.5 C#视觉程序开发实例1----CamManager实现模拟相机采集图片
2.5 C#视觉程序开发实例1----CamManager实现模拟相机采集图片 1 目标效果视频 CamManager 2 CamManager读取本地文件时序 3 BD_Vision_Utility添加代码 3.0 导入链接库 BD_OperatorSets.dllSystem.Windows.Forms.dllOpencvSharp 3.1 导入VisionParam中创建的文件Util_FileO…...

算法简介:什么是算法?——定义、历史与应用详解
引言 在现代计算机科学中,算法是一个核心概念。无论是编程还是数据分析,算法都扮演着至关重要的角色。在这篇博客中,我们将深入探讨算法的定义、历史背景以及它在计算机科学中的地位和实际应用。 什么是算法? 算法是解决特定问题…...

xss攻击
一、xss攻击简介 1、OWASP TOP 10之一,XSS被称为跨站脚本攻击(Cross-site-scripting)2、主要基于java script(JS)完成恶意攻击行为。JS可以非常灵活的操作html、css和浏览器,这使得XSS攻击的“想象”空间特别大。3、XSS通过将精心构造代码(JS)代码注入到网页中,并由…...

Android 性能优化之布局优化
文章目录 Android 性能优化之布局优化绘制原理双缓冲机制布局加载原理检测耗时常规方式AOP方式获取控件加载耗时 布局优化AsyncLayoutInflater方案Compose方案减少布局层级和复杂度避免过度绘制 Android 性能优化之布局优化 绘制原理 CPU:负责执行应用层的measure…...

TCP 握手数据流
这张图详细描述了 TCP 握手过程中,从客户端发送 SYN 包到服务器最终建立连接的整个数据流转过程,包括网卡、内核、进程中的各个环节。下面对每个步骤进行详细解释: 客户端到服务器的初始连接请求 客户端发送 SYN 包: 客户端发起…...

MDA协议
MDA协议通常指消息摘要算法(Message Digest Algorithm),在计算机安全和密码学中被广泛用于数据完整性验证和认证。以下是对MDA协议的详细介绍: 1. 概述 MDA协议是一类哈希函数,用于生成固定长度的消息摘要或哈希值。…...

always块敏感列表的相关报错,
在综合的时候,报错如下 Synthesis synth_1 [Synth 8-91] ambiguous clock in event control ["E:/FPGA/FPGA_project/handwrite_fft/handwrite_fft.srcs/sources_1/new/reg_s2p.v":140] 猜测报错原因(暂时没有时间寻找原因,后续在…...

STM32空闲中断处理串口接受数据
1、检测到空闲线路中断也叫做空闲中断,意思是串口接收完1字节数据后,数据先保持高电平(空闲)的时间超过1字节数据所用的时间,则被判定为空闲中断。 2、HAL库中操作空闲中断的宏是 (1)_HAL_UAR…...