《算法笔记》总结No.6——贪心
一.简单贪心
贪心法是求解一类最优化问题的方法,它总是考虑在当前状态下局部最优(或较优)之后,来使全局的结果达到最优(或较优)的策略。显然,如果采取较优而非最优的策略(最优策略可能不存在或是不易想到),得到的全局结果也无法是最优的。而要获得最优结果,则要求中间的每步策略都是最优的,因此严谨使用贪心法来求解最优化问题需要对采取的策略进行证明。证明的一般思路是使用反证法及数学归纳法,即假设策略不能导致最优解,然后通过一系列推导来得到矛盾,以此证明策略是最优的,最后用数学归纳法保证全局最优。不过对平常使用来说,也许没有时间或不太容易对想到的策略进行严谨的证明(贪心的证明往往比贪本身更难),因此一般来说,如果在想到某个似乎可行的策略之后,并且自己无法举出反例,那么就勇敢地实现它。
1.组个最小数
给定数字0~9各若干个,可以任意顺序排列这些数字,但必须全部使用,且使目标数字尽可能小(当然0不能做首位)比如输入两个0、两个1、三个5和一个8,得到的最小数字就是100155858。
相信大家一下子就可以看出来策略:先从1~9中选择不为0的最小数输出,然后从0~9输出数字,每个数字输出次数为其剩余个数。
策略正确的证明:
- 首先由于所有数字都必须参与组合,因此最后结果的位数是确定的。
- 由于最高位不为0,则选一个尽可能小的数作为首位——最高位定理
- 其余位数也应该从小到大输出~
教材上的实在是太抽象了,好像有点错误,这里博主自己写了一种:
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;int main() { vector<int> V;for(int i=1;i<=10;i++){int temp=0;cin>>temp;V.push_back(temp);}sort(V.begin(),V.end()); //直接排成升序 int flag=0; //标记 for(int i=0;i<=9;i++)if(V[i]!=0){int temp=V[i];V[i]=V[0];V[0]=temp;flag=i;//保存第一个不为0的位置 break; }for(int i=flag+1;i<=9;i++) //找更小的头,直接从flag下一位开始即可,节省时间~ if(V[i]<V[0]&&V[i]!=0){int temp=V[i];V[i]=V[0];V[0]=temp;}for(int i=0;i<=9;i++)cout<<V[i];
}
逻辑上没什么难度,主要是要想清楚~
2.月饼库存
- 输入:第一行输入N和M:N位月饼的种类数目,M位市场对月饼的需求总量;接下来的两行均要输入N个数:第一行的N个数分别对应当前种类的月饼全部卖出后可以挣多少,而第二行的N个数对应当前月饼的总数量~
- 要求输出:在规定需求量下最高收入
试想一下你如果作为老板,会怎么去“贪得无厌”?很明显——只需要在有限的需求量中,尽可能多的卖出单价最贵的月饼,岂不是可以收货最多的营业额?如下博主自己写的一种实现,和教材上的也不太一样:
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;struct mooncake{double num; //总数 double income; //总收入 double price; //单价,需要自己计算
}; int main() {int N,M;cin>>N>>M;vector<mooncake> V;for(int i=1;i<=N;i++) {mooncake temp;V.push_back(temp);}cout<<"请输入数量:"<<endl;for(int i=1;i<=N;i++) {double num=0;cin>>num;V[i-1].num=num;}cout<<"请输入总价:"<<endl;for(int i=1;i<=N;i++) {double income=0;cin>>income;V[i-1].income=income;}for(int i=0;i<=N-1;i++) V[i].price=V[i].income/V[i].num; //计算单价//按单价降序排列!保证贵的尽可能多卖for(int i=0;i<=V.size()-1;i++){for(int j=i;j<=V.size()-1;j++) if(V[j].price>V[i].price) {mooncake temp;temp=V[j];V[j]=V[i];V[i]=temp;}}for(int i=0;i<=V.size()-1;i++)cout<<"单价第"<<(i+1)<<"高的值为:"<<V[i].income<<" "<<V[i].price<<" "<<V[i].num<<endl;for(int i=0;i<=N-1;i++)cout<<V[i].num<<endl; int j=0; //使用的下标 double count=0; //总利润 while(M>0) //当还有需求量时 {double doubt=0;doubt=M-V[j].num; //用M减去当前类型的额总量 if(doubt>=0)//减了以后M还有剩余{M-=V[j].num;//当前种类全部卖出 count+=V[j].income;//直接总价相加 j++;cout<<V[j].num;}else if(doubt<0) //不够减这么多{count+=V[j].price*M;//剩余部分按照单价计算 break; } }cout<<"最高利润值为:"<<count<<endl;return 0;
}
仔细品味上述中的whlie循环:当M还不为0时——即还有需求量,就卖最贵的月饼。按顺序一个一个卖:如果当前需求量足以卖完当前种类的全部数量,则直接累加总价;如果不足以卖完当前的全部,则有多少卖多少,按照单价计算即可~
我们拿教材的测试用例测试一下:
- 3 20
- 18 15 10
- 75 72 45
结果为94.50,和标准答案一致~
此外这里博主直接把排序写在main函数了,写在独立的函数再调用,对于结构体型的vector好像有点bug,排序不太成功,大家如果知道原因的话可以在评论区写出来~
二.区间贪心
题干如下:
对于这类题目,只需要牢记——优先选择左端点大的区间!
下面来说说为什么要这样做,如上图:不难发现,为了保证尽可能多选,当某个较长的区间包含了较短的区间,我们肯定要先选择最短的区间,这一点很好理解。
而对于上面这种情况,比如1和2这种重叠的区间,不难发现,如果选了左端点最大的1区间,只会占到9号位,而选了2号区间则会占到8号位——这显然不符合贪心尽可能少花钱(少花区间)的思想,因此要选得尽可能靠左,这样右边空的会更多~如上,我们手算可以看出来最多有4个不相交的。
教材上的代码:
#include <cstdio>
#include <algorithm>
using namespace std;const int maxn=110;
struct Inteval{int x,y; //开区间左右端点
}I[maxn]; bool cmp(Inteval a,Inteval b)
{if(a.x!=b.x)return a.x>b.x; //左端点从大到小排序 elsereturn a.y<b.y; //左端点相同的按右端点从小到大排序
}int main() {int n;while(scanf("%d",&n,n!=0)){for(int i=0;i<n;i++)scanf("%d%d",&I[i].x,&I[i].y);sort(I,I+n,cmp); //排序区间 int ans=1,lastX=I[0].x;//ans记录总数,lastX记录上一个被选择的区间的左端点 for(int i=1;i<n;i++){if(I[i].y<=lastX) //如果该区间右端点在lastX左边 {lastX=I[i].x; //以I[i]作为新选中的区间 ans++; //不相交的区间个数+1 } }printf("%d\n",ans); } return 0;
}
不过博主还是不太喜欢原始数组,下面给一种vector结构体版本:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;struct section{int x=0;int y=0;//x和y分别为左右端点
}; int main() {int n=0;vector<section> V;cin>>n;for(int i=1;i<=n;i++) //读入数据 {section temp;int x=0,y=0;cin>>x>>y;if(x>y) //防止左端点大于右端点 {int temp1=x;x=y;y=temp1; }else if(x==y) //若左右端点相同 {i-=1; //则当前输入 不算cout<<"不可以输入相同的左右端点!"<<endl; continue; //舍弃数据,本次循环作废~ } temp.x=x;temp.y=y;V.push_back(temp);}//按要求排序区间优先级 for(int i=0;i<=V.size()-1;i++){for(int j=i+1;j<=V.size()-1;j++){if(V[j].x>V[i].x) //左端点越大越靠前{section temp=V[j];V[j]=V[i];V[i]=temp;}else if(V[j].x==V[i].x&&V[j].y<V[i].y) //左端点相同的话,右端点小的优先 {section temp=V[j];V[j]=V[i];V[i]=temp;} }}cout<<"顺序如下:"<<endl; for(int i=0;i<=V.size()-1;i++)cout<<V[i].x<<"~"<<V[i].y<<endl; int count=1,lastX=V[0].x;//count用来统计总数,lastX是上一个符合条件的区间的左端点for(int i=1;i<=V.size()-1;i++)//直接从第二个区间开始 {if(V[i].y<lastX) //如果当前区间的右端点不和上一个左端点相加,满足题意 {lastX=V[i].x;count++;} } cout<<count<<endl;return 0;
}
测试如下:
总的来说,贪心法是用来解决一类最优化问题,并希望由局部最优策略来推得全局最优结果的算法思想。贪心算法适用的问题一定满足最优子结构的性质,即一个问题的最优解可以由他的子问题的最优解有效地构造出来。显然不是所有问题都适合贪心法,但是这并不妨碍贪心算法成为一个简洁、实用、高效的算法~
相关文章:

《算法笔记》总结No.6——贪心
一.简单贪心 贪心法是求解一类最优化问题的方法,它总是考虑在当前状态下局部最优(或较优)之后,来使全局的结果达到最优(或较优)的策略。显然,如果采取较优而非最优的策略(最优策略可能不存在或是不易想到),得到的全局结果也无法是…...

久期分析与久期模型
目录 一、久期分析的理论原理 二、数据准备 三、Stata 程序代码及解释 四、代码运行结果 一、久期分析的理论原理 久期(Duration)是衡量债券价格对利率变动敏感性的重要指标。它不仅仅是一个简单的时间概念,更是反映了债券现金流回收的平均…...

MybatisPlus 使用教程
MyBatisPlus使用教程 文章目录 MyBatisPlus使用教程1、使用方式1.1 引入依赖1.2 构建mapper接口 2、常用注解2.1 TableName2.2 TableId2.3 TableField MyBatisPlus顾名思义便是对MyBatis的加强版,但两者本身并不冲突(只做增强不做改变): 引入它并不会对原…...

bash: redi-cli: 未找到命令...
问题描述 在执行命令:redi-cli --bigkeys 提示:bash: redi-cli: 未找到命令... 确定服务器是否有Redis进程 ps -ef | grep redis查找Redis 文件信息 find / -name "redis-*"进入到当前目录 cd /usr/bin/再次执行命令 涉及redis-cli 连…...
linux 内核 红黑树接口说明
红黑树(rbtree)在linux内核中使用非常广泛,cfs调度任务管理,vma管理等。本文不会涉及关于红黑树插入和删除时的各种case的详细描述,感兴趣的读者可以查阅其他资料。本文主要聚焦于linux内核中经典rbtree和augment-rbtree操作接口的说明。 1、基本概念 二叉树:每个…...
【ELK】filebeat 和logstash区别
Filebeat 和 Logstash 都是 Elastic Stack (也称为 ELK Stack) 的重要组件,用于日志数据的收集、处理和传输。它们有不同的功能和使用场景: Filebeat 角色: 轻量级日志收集器。功能: 从指定的日志文件中读取日志数据。可以从多个源(如文件、…...
CNN -1 神经网络-概述
CNN -1 神经网络-概述 一:芯片科技发展介绍了解1> 芯片科技发展趋势2> 芯片使用领域3> 芯片介绍1. 神经网络芯片2. 神经网络处理单元NPU(Neural Processing Unit)二:神经网络1> 什么是神经网络2> 神经元3> 人工神经网络三:卷积神经网络(CNN)入门讲解一…...

插片式远程IO模块:Profinet总线耦合器在STEP7配置
XD9000是Profinet总线耦合器,单个耦合器最多可扩展32个I/O模块!本文将深入探讨插片式远程IO模块的应用,并揭秘Profinet总线耦合器在STEP7配置过程中的技巧与注意事项。 STEP7-MicroWINSMART软件组态步骤: 1、按照下图指示安装GSD…...

python3读取shp数据
目录 1 介绍 1 介绍 需要tmp.shp文件和tmp.dbf文件,需要安装geopandas第三方库,python3代码如下, import geopandas as gpdshp_file_path "tmp.shp" shp_data gpd.read_file(shp_file_path) for index, row in shp_data.iterro…...

pytorch实现水果2分类(蓝莓,苹果)
1.数据集的路径,结构 dataset.py 目的: 输入:没有输入,路径是写死了的。 输出:返回的是一个对象,里面有self.data。self.data是一个列表,里面是(图片路径.jpg,标签&…...

Redis实践经验
优雅的Key结构 Key实践约定: 遵循基本格式:[业务名称]:[数据名]:id例:login:user:10长度步超过44字节(版本不同,上限不同)不包含特殊字符 优点: 可读性强避免key冲突方便管理节省内存&#x…...
分类题解清单
目录 简介MySQL题一、聚合函数二、排序和分组三、高级查询和连接四、子查询五、高级字符串函数 / 正则表达式 / 子句 算法题一、双指针二、滑动窗口三、模拟四、贪心五、矩阵六、排序七、链表八、设计九、前缀和十、哈希表十一、字符串十二、二叉树十三、二分查找十四、回溯十五…...
QUdpSocket 的bind函数详解
QUdpSocket 是 Qt 框架中用于处理 UDP 网络通信的类。bind 函数是此类中的一个重要方法,它用于将 QUdpSocket 对象绑定到一个特定的端口上,以便在该端口上接收 UDP 数据包。 函数原型 在 Qt 中,bind 函数的原型通常如下所示: b…...

[spring] Spring MVC - security(下)
[spring] Spring MVC - security(下) callback 一下,当前项目结构如下: 这里实现的功能是连接数据库,大范围和 [spring] rest api security 重合 数据库连接 - 明文密码 第一部分使用明文密码 设置数据库 主要就是…...

数据库数据恢复—SQL Server数据库由于存放空间不足报错的数据恢复案例
SQL Server数据库数据恢复环境: 某品牌服务器存储中有两组raid5磁盘阵列。操作系统层面跑着SQL Server数据库,SQL Server数据库存放在D盘分区中。 SQL Server数据库故障: 存放SQL Server数据库的D盘分区容量不足,管理员在E盘中生…...
spring security的demo
参考: https://juejin.cn/post/6844903502003568647 Spring Security 5.7.0弃用 WebSecurityConfigurerAdapter-CSDN博客 创建 Spring Security 配置类 WebSecurityConfigurerAdapter已被弃用 package com.cq.sc.security.config;import org.springframework.c…...

无需构建工具,快速上手Vue2 + ElementUI
无需构建工具,快速上手Vue2 ElementUI 在前端开发的世界中,Vue.js以其轻量级和易用性赢得了开发者的青睐。而Element UI,作为一个基于Vue 2.0的桌面端组件库,提供了丰富的界面组件,使得构建美观且功能丰富的应用变得…...

通信协议_Modbus协议简介
概念介绍 Modbus协议:一种串行通信协议,是Modicon公司(现在的施耐德电气Schneider Electric)于1979年为使用可编程逻辑控制器(PLC)通信而发表。Modbus已经成为工业领域通信协议的业界标准(De f…...

LabVIEW优化氢燃料电池
太阳能和风能的发展引入了许多新的能量储存方法。随着科技的发展,能源储存和需求平衡的方法也需要不断创新。智慧城市倡导放弃石化化合物,采用环境友好的发电和储能技术。氢气系统和储存链在绿色能源倡议中起着关键作用。然而,氢气密度低&…...
SpringCloudGateway
作用 统一管理,易于监控安全,限流:在网关层就过滤掉非法信息nginx外部网关,gateway内网nginx可以使用Lua或Kong来增强 概念 id:名称随意uri: 被代理的服务地址。id和uri必填,谓词和过滤器非必填谓词:可以…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...