当前位置: 首页 > news >正文

【论文速递】ACM MM 2022 - 基于统一对比学习框架的新闻多媒体事件抽取

【论文速递】ACM MM 2022 - 基于统一对比学习框架的新闻多媒体事件抽取

【论文原文】:Multimedia Event Extraction From News With a Unified Contrastive Learning Framework

【作者信息】:Liu, Jian and Chen, Yufeng and Xu, Jinan

论文:https://dl.acm.org/doi/pdf/10.1145/3503161.3548132代码:https://github.com/jianliu-ml/Multimedia-EE

博主关键词:对比学习、多媒体事件抽取、图像表征学习

推荐论文:无

摘要

从新闻中提取事件在下游应用程序中有很多好处。然而,今天的事件提取(EE)系统通常专注于单一的模态——无论是文本还是图像,并且由于新闻文档通常以多媒体格式呈现,因此这种方法会受到信息不完整的影响。在本文中,我们提出了一种新的多媒体EE方法,通过使用统一的对比学习框架桥接文本和视觉模式。我们的中心思想是为文本和图像创建一个共享空间,以改善它们的相似表示。这通常是通过对文本图像对进行训练来实现的,我们证明,通过研究另一种模态的互补性,可以使用该框架来促进一种模态学习。在基准数据集上,我们的方法实现了一个新的最先进的性能,并显示F1提高了3%。此外,我们证明,即使在视觉模态中没有标注数据的零样本场景中,它也可以实现视觉模态EE最前沿性能。

1、简介

在这里插入图片描述

目前的EE方法主要用于单一形式——文本或图像[16],并且由于新闻文章通常以多媒体格式呈现,因此它们存在获取不完整信息的风险。考虑图1所示的新闻文章。本文描述了一个攻击事件(用文本单词“fires”表示);然而,事件的一个论点,即[machine gun],只出现在图片中。根据先前的研究,超过30%的新闻图像包含文本中不存在的视觉事件论点[16],使得多媒体EE成为一个关键话题。

多媒体EE的发展有两个主要障碍。第一个是数据问题:由于标注昂贵,标记有并行文本视觉事件的资源有限。现有数据集,如文本模态中的ACE 2005语料库[20]和视觉模态中的imSitu语料库[31],具有完全不同的事件定义/模式,使得跨模态数据共享具有挑战性。第二个问题与建模有关-由于缺乏并行数据,先前的多媒体EE方法通常使用流水线方法和启发式规则来对齐数据[28,33]并学习模态不变模式(例如,使用绑定分类器[16])。然而,这些方法存在一定的缺陷,流水线方法会存在错误传递,学习模态不变模式很难在全局角度捕捉不同模态的依赖性。

在这项研究中,我们提供了一种新的多媒体EE方法,展示了有效应对上述挑战的优势。与之前的工作相比,我们的方法通过统一的对比学习框架为图像、文本和事件模式创建了共享的表示空间。我们证明,使用该框架,任何配对的文本图像资源,无论模式如何,都可以用于模型训练,这大大减轻了缺少并行标记数据的问题。另一方面,该框架避免了管道方法的复杂性,并能够从整体角度对不同模式的相互依赖性进行建模。特别是,给定一个多媒体文档,1)我们可以将图像投影到联合表示空间中,并将其用作增强文本EE的额外证据,2)类似地,我们可以将文本投影到联合表达空间中,以找到增强视觉EE的补充线索。此外,通过评估句子和图像的相似性,这种联合空间自然能够实现跨模态事件的共同参考。

我们基于M2E2基准评估了我们的方法[16]。根据结果,我们的方法显著优于以前的方法(包括单模态方法和多模态方法),在F1中,事件提取和事件论元提取分别提高了2.6%和3.4%-这显然证明了其有效性。有趣的是,通过使用这种对比学习框架,我们发现,即使在没有用于训练的训练数据的零样本场景中,我们的方法也能达到与最先进方法相比的竞争性能。此外,我们进行了一系列定性和定量研究,以调查我们方法的优点和缺点。

总之,我们有三个贡献:

  • 我们为多媒体EE提供了一种新的方法,该方法使用统一的对比学习框架来解决数据和模型挑战。作为一项研究多媒体EE对比学习的开创性研究,我们的工作可能会启发这方面的更多研究。
  • 我们表明,使用我们的统一框架,无论其标注模式如何,都可以利用不同模式的资源进行学习。此外,通过采用整体建模方法,该统一解决方案避免了管道方法的复杂性。
  • 我们根据标准基准建立了新的最先进性能。此外,我们还表明,即使在零样本场景中,我们的方法也能与以前的视觉EE方法相媲美。

2、方法

图2描述了我们方法的高级概述。特别是,我们首先引入了一个对比学习框架来学习图像、文本和事件本体(例如,事件类型和语义角色)的共享表示空间。然后,使用这个共享空间,我们进行文本和视觉EE,以将补充信息合并到其他模态中。最后,我们执行具有相似性度量的跨模态事件共同参考过程,以组合来自多个模态的事件。我们的方法的技术细节如下。

4、实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

【论文速递 | 精选】

论坛地址:https://bbs.csdn.net/forums/paper

相关文章:

【论文速递】ACM MM 2022 - 基于统一对比学习框架的新闻多媒体事件抽取

【论文速递】ACM MM 2022 - 基于统一对比学习框架的新闻多媒体事件抽取 【论文原文】:Multimedia Event Extraction From News With a Unified Contrastive Learning Framework 【作者信息】:Liu, Jian and Chen, Yufeng and Xu, Jinan 论文&#xff…...

数据库分库分表

一、为什么要分库分表 如果一个网站业务快速发展,那这个网站流量也会增加,数据的压力也会随之而来,比如电商系统来说双十一大促对订单数据压力很大,Tps十几万并发量,如果传统的架构(一主多从),主库容量肯定无法满足这么高的Tps,业务越来越大,单表数据超出了数据库支持…...

【C缺陷与陷阱】----语义“陷阱”

💯💯💯 本篇处理的是有关语义误解的问题:即程序员的本意是希望表示某种事物,而实际表示的却是另外一种事物。在本篇我们假定程序员对词法细节和语法细节的理解没有问题,因此着重讨论语义细节。导言&#xf…...

JavaWeb--VUE

VUE1 概述2 快速入门3 Vue 指令3.1 v-bind & v-model 指令3.2 v-on 指令3.3 条件判断指令3.4 v-for 指令4 生命周期5 案例5.1 需求5.2 查询所有功能5.3 添加功能目标 能够使用VUE中常用指令和插值表达式能够使用VUE生命周期函数 mounted 1 概述 接下来我们学习一款前端的框…...

2分钟彻底搞懂“高内聚,低耦合”

💗推荐阅读文章💗 🌸JavaSE系列🌸👉1️⃣《JavaSE系列教程》🌺MySQL系列🌺👉2️⃣《MySQL系列教程》🍀JavaWeb系列🍀👉3️⃣《JavaWeb系列教程》…...

网络编程UDP TCP

定义:关注底层数据的传输 区分网页编程:关注上层应用 端口号:区分软件 2个字节 0~65535表示端口号 同一协议下端口号不能冲突 8000以下称为预留端口号,建议之间设置端口号为8000以上 常见的端口号: 80:http 8080:tomcat 3306:mysql 1521:oracle InetSocketAddress:此类实现IP套…...

【2023-Pytorch-检测教程】手把手教你使用YOLOV5做电线绝缘子缺陷检测

随着社会和经济的持续发展,电力系统的投资与建设也日益加速。在电力系统中,输电线路作为电能传输的载体,是最为关键的环节之一。而绝缘子作为输电环节中的重要设备,在支撑固定导线,保障绝缘距离的方面有着重要作用。大…...

交叉编译(NDK)

文章目录前言Android-NDK使用NDK目录结构主流的Android NDK交叉编译前言 交叉编译是指在一种计算机体系结构上编译和构建应用程序,但是生成的可执行文件和库是针对另一种不同的体系结构,比如ARM、MIPS、PowerPC、x86 等。 常见的交叉编译工具集&#x…...

【数据库】MySQL 解读事务的意义及原则

目录 1.事务的概念 2.为什么要用事物 3.使用 4.事务的原则(ACID) 4.1原子性(Atomicity) 4.2一致性(Consistency) 4.3持久性(Durability) 4.4隔离性(Isolation…...

【Linux】冯诺依曼体系结构

冯诺依曼体系结构一、计算机结构体系来源二、冯诺依曼体系结构三、冯诺依曼体系结构中的数据流动一、计算机结构体系来源 研制电子计算机的想法产生于第二次世界大战期间,主要用来进行弹道计算,在"时间就是胜利"的战争年代,迫切需…...

【小白】git是什么?gitee和git和github的关系?

gitee问题一、git是什么?gitee和git和github的关系?问题二、能不能通俗易懂的说?问题一、git是什么?gitee和git和github的关系? Git是一种版本控制系统,用于管理文件的版本、记录文件的修改历史以及协同开…...

UDS 14229 -1 刷写34,36,37服务,标准加Trace讲解,没理由搞不明白

🍅 我是蚂蚁小兵,专注于车载诊断领域,尤其擅长于对CANoe工具的使用🍅 寻找组织 ,答疑解惑,摸鱼聊天,博客源码,点击加入👉【相亲相爱一家人】🍅 玩转CANoe&…...

【Android -- 软技能】聊聊程序员的软技能

什么是软技能? 所谓软技能,就是相对于「硬技能」而言的技能,对于程序员来说,「硬技能」就是计算机专业技术能力,软技能则是专业之外的所有技能,包括职业规划能力、处理人际关系能力、专业态度、做事的方式…...

【Java学习笔记】27.Java 抽象类

Java 抽象类 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类。 抽象类除了不能实例化对象…...

Vite4 + Vue3 + vue-router4 动态路由

动态路由,基本上每一个项目都能接触到这个东西,通俗一点就是我们的菜单是根据后端接口返回的数据进行动态生成的。表面上是对菜单的一个展现处理,其实内部就是对router的一个数据处理。这样就可以根据角色权限或者一些业务上的需求&#xff0…...

MS(mbed l432KC)-->速通9个lab详细解析[5]

Exercise5 这次实验我们将正式接触到一个相对来说有点意思并且有点牌面的传感器了----->数码管。数码管是我们生活中非常常见的一种传感器,比如计时器,秒表,以及数字显示大屏幕,其实原理都跟数码管差不多。如果是没有单片机基础的同学,突然一下接触到相对来说比较常见…...

XXE漏洞复现

目录XML基础概念XML数据格式DTD基础定义DTD作用分类DTD实体实体的分类DTD元素XXE漏洞介绍实操如何探测xxe漏洞XML基础 概念 什么是XML 是一种可扩展标记语言 (Extensible Markup Language, XML) ,标准通用标记语言的子集,可以用来标记数据、定义数据类型…...

初识C++需要了解的一些东西(2)

😁关注博主:翻斗花园第一代码手牛爷爷 😃Gitee仓库:牛爷爷爱写代码 目录🌍内联函数🌕内联函数概念🌖内联函数特性🌓auto关键字(C11)🌞类型别名⭐️auto简介☀️auto的使…...

全国程序员薪酬大曝光!看完我酸了····

2023年,随着互联网产业的蓬勃发展,程序员作为一个自带“高薪多金”标签的热门群体,被越来越多的人所关注。在过去充满未知的一年中,他们的职场现状发生了一定的改变。那么,程序员岗位的整体薪资水平、婚恋现状、职业方…...

改进YOLO系列 | CVPR2023最新Backbone | FasterNet 远超 ShuffleNet、MobileNet、MobileViT 等模型

论文地址:https://export.arxiv.org/pdf/2303.03667v1.pdf 为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。并且,如此低的FLOPS主要…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...