npm install 报错:PhantomJS not found on PATH
npm install 报错:PhantomJS not found on PATH
整体报错内容
npm ERR! code 1
npm ERR! path G:\work-learn\open-coding\bruno\node_modules\phantomjs-prebuilt
npm ERR! command failed
npm ERR! command C:\Windows\system32\cmd.exe /d /s /c node install.js
npm ERR! PhantomJS not found on PATH
npm ERR! Downloading https://github.com/Medium/phantomjs/releases/download/v2.1.1/phantomjs-2.1.1-windows.zip
npm ERR! Saving to C:\Users\123\AppData\Local\Temp\phantomjs\phantomjs-2.1.1-windows.zip
npm ERR! Receiving...
npm ERR! Error making request.
npm ERR! Error: connect ETIMEDOUT 20.205.243.166:443
npm ERR! at TCPConnectWrap.afterConnect [as oncomplete] (node:net:1595:16)
npm ERR!
npm ERR! Please report this full log at https://github.com/Medium/phantomjsnpm ERR! A complete log of this run can be found in: C:\Users\123\AppData\Local\npm-cache\_logs\2024-07-12T05_29_42_872Z-debug-0.log
解决方案
首先执行
npm install phantomjs@2.1.1 --ignore-scripts
之后再次执行
npm install
成功解决,不再报错

相关文章:
npm install 报错:PhantomJS not found on PATH
npm install 报错:PhantomJS not found on PATH 整体报错内容 npm ERR! code 1 npm ERR! path G:\work-learn\open-coding\bruno\node_modules\phantomjs-prebuilt npm ERR! command failed npm ERR! command C:\Windows\system32\cmd.exe /d /s /c node install.…...
【C++进阶学习】第六弹——set和map——体会用C++来构建二叉搜索树
set和map基础:【C进阶学习】第五弹——二叉搜索树——二叉树进阶及set和map的铺垫-CSDN博客 前言: 在上篇的学习中,我们已经学习了如何使用C语言来实现二叉搜索树,在C中,我们是有现成的封装好的类模板来实现二叉搜索树…...
sqlmap确定目标/实操
安装kali,kali自带sqlmap,在window系统中跟linux系统操作有区别 sqlmap是一款自动化SQL工具,打开kali终端,输入sqlmap,出现以下界面,就说明sqlmap可用。 sqlmap确定目标 一、sqlmap直连数据库 1、直连数据库…...
Java笔试|面试 —— 对多态性的理解
谈谈对多态性的理解: 一个事物的多种形态(编译和运行时状态不一致性) 实现机制:通过继承、重写和向上转型(Object obj new 子类())来实现。 1.广义上的理解 子类对象的多态性,方法的重写&am…...
从RL的专业角度解惑 instruct GPT的目标函数
作为早期chatGPT背后的核心技术,instruct GPT一直被业界奉为里程碑式的著作。但是这篇论文关于RL的部分确写的非常模糊,几乎一笔带过。当我们去仔细审查它的目标函数的时候,心中不免有诸多困惑。特别是作者提到用PPO来做强化学习,…...
location匹配的优先级和重定向
nginx的重定向(rewrite) location 匹配 location匹配的就是后面的uri /wordpress 192.168.233.10/wordpress location匹配的分类和优先级 1.精确匹配 location / 对字符串进行完全匹配,必须完全符合 2.正则匹配 ^-前缀级别ÿ…...
观察矩阵(View Matrix)、投影矩阵(Projection Matrix)、视口矩阵(Window Matrix)及VPM矩阵及它们之间的关系
V表示摄像机的观察矩阵(View Matrix),它的作用是把对象从世界坐标系变换到摄像机坐标系。因此,对于世界坐标系下的坐标值worldCoord(x0, y0, z0),如果希望使用观察矩阵VM将其变换为摄像机坐标系下的坐标值localCoord(x…...
谷粒商城学习笔记-19-快速开发-逆向生成所有微服务基本CRUD代码
文章目录 一,使用逆向工程步骤梳理1,修改逆向工程的application.yml配置2,修改逆向工程的generator.properties配置3,以Debug模式启动逆向工程4,使用逆向工程生成代码5,整合生成的代码到对应的模块中 二&am…...
时序预测 | Matlab实现TCN-Transformer的时间序列预测
时序预测 | Matlab实现TCN-Transformer的时间序列预测 目录 时序预测 | Matlab实现TCN-Transformer的时间序列预测效果一览基本介绍程序设计 效果一览 基本介绍 基于TCN-Transformer模型的时间序列预测,可以用于做光伏发电功率预测,风速预测,…...
没想到MySQL 9.0这么拉胯
MySQL 7月1号发布了9.0版本,然而没想到并没有引起大家的狂欢,反而是来自DBA圈子的一篇吐槽,尤其是PG界吐槽更厉害。 难道MySQL现在真的这么拉胯了?本着好奇的态度,我也去下载了MySQL9.0的手册看了一下。确实有点让我大…...
开源 Wiki 系统 InfoSphere 2024.01.1 发布
推荐一套基于 SpringBoot 开发的简单、易用的开源权限管理平台,建议下载使用: https://github.com/devlive-community/authx 推荐一套为 Java 开发人员提供方便易用的 SDK 来与目前提供服务的的 Open AI 进行交互组件:https://github.com/devlive-commun…...
1.Introduction to Spring Web MVC framework
Web MVC framework 文档:22. Web MVC framework (spring.io) 概述 Web MVC框架(Web Model-View-Controller Framework)是一种用于构建Web应用程序的软件架构模式。MVC模式将应用程序分为三个主要组件:模型(Model&am…...
Onnx 1-深度学习-概述1
Onnx 1-深度学习-概述1 一: Onnx 概念1> Onnx 介绍2> Onnx 的作用3> Onnx 应用场景4> Onnx 文件格式1. Protobuf 特点2. onnx.proto3协议3> Onnx 模型基本操作二:Onnx API1> 算子详解2> Onnx 算子介绍三: Onnx 模型1> Onnx 函数功能1. np.random.rand…...
网络基础——udp协议
UDP协议(User Datagram Protocol,用户数据报协议)是OSI(Open System Interconnection,开放式系统互联)参考模型中一种无连接的传输层协议,它提供了一种简单的、不可靠的数据传输服务。以下是关于…...
分布式锁理解
介绍分布式锁,我觉得从项目的背景入手把 在伙伴匹配系统中,我创建了一个定时任务,做为缓存预热的手段 这个具体原因在Redis-CSDN博客 接下来切入正题: 想象每个服务器都有一个定时任务,都要对数据库或者缓存进行操…...
Android Gradle 开发与应用 (十): Gradle 脚本最佳实践
目录 1. 使用Gradle Kotlin DSL 1.1 什么是Gradle Kotlin DSL 1.2 迁移到Kotlin DSL 1.3 优势分析 2. 优化依赖管理 2.1 使用依赖版本管理文件 2.2 使用依赖分组 3. 合理使用Gradle插件 3.1 官方插件和自定义插件 3.2 插件管理的最佳实践 4. 任务配置优化 4.1 使用…...
c#获取本机的MAC地址(附源码)
在前一次的项目中,突然用到了这个获取本机的MAC地址,然后就研究了一下,记录下来,防止以后再用到, 使用winfrom做的,界面一个button,一个textBox,点了button以后给textBox赋值显示mac地址 附上源…...
sqlmap使用之-post注入、head注入(ua、cookie、referer)
1、post注入 1.1、方法一,通过保存数据包文件进行注入 bp抓包获取post数据 将数据保存到post.txt文件 加上-r指定数据文件 1.2、方法二、通过URL注入 D:\Python3.8.6\SQLmap>python sqlmap.py -u "http://localhost/login.php" --data "userna…...
XSS: 原理 反射型实例[入门]
原理 服务器未对用户输入进行严格校验,使攻击者将恶意的js代码,拼接到前端代码中,从而实现恶意利用 XSS攻击危害 窃取用户Cookie和其他敏感信息,进行会话劫持或身份冒充后台增删改文章进行XSS钓鱼攻击利用XSS漏洞进行网页代码的…...
Idea新增Module报错:sdk ‘1.8‘ type ‘JavaSDK‘ is not registered in ProjectJdkTable
文章目录 一,创建Module报错二,原因分析三,解决方案1,点击上图的加号,把JDK8添加进来即可2,点击左侧[Project],直接设置SDK为JDK8 四,配置检查与验证 一,创建Module报错 …...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
