JCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
目录
- JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
- 分类效果
- 格拉姆矩阵图
- GAF-PCNN-MATT
- GASF-CNN
- GADF-CNN
- 基本介绍
- 程序设计
- 参考资料
分类效果
格拉姆矩阵图
GAF-PCNN-MATT
GASF-CNN
GADF-CNN
基本介绍
1.Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断,三个模型对比,运行环境matlab2023b;PCNN-MATT为并行卷积神经网络融合多头注意力机制。
2.先运行格拉姆矩阵变换进行数据转换,然后运行分别GAF_PCNN-MATT.m,GADF_CNN.m,GASF_CNN.m完成多特征输入数据分类预测/故障诊断;
GADF_CNN.m,是只用到了格拉姆矩阵的GADF矩阵,将GADF矩阵送入CNN进行故障诊断。
GASF_CNN-MATT.m,是只用到了格拉姆矩阵的GASF矩阵,将GASF矩阵送入CNN进行故障诊断。
GAF_PCNN-MATT.m,是将GASF 图与GADF 图同时送入两条并行CNN-MATT中,经过卷积-池化后,两条CNN-MATT网络各输出一组一维向量;然后,将所输出两组一维向量进行拼接融合;通过全连接层后,最终将融合特征送入到Softmax 分类器中。
参考文献
-
PCNN-MATT结构
-
-
CNN结构
程序设计
- 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断。
fullyConnectedLayer(classnum,'Name','fc12')softmaxLayer('Name','softmax')classificationLayer('Name','classOutput')];lgraph = layerGraph(layers1);layers2 = [imageInputLayer([size(input2,1) size(input2,2)],'Name','vinput') flattenLayer(Name='flatten2')bilstmLayer(15,'Outputmode','last','name','bilstm') dropoutLayer(0.1) % Dropout层,以概率为0.2丢弃输入reluLayer('Name','relu_2')selfAttentionLayer(2,2,"Name","mutilhead-attention") %Attention机制fullyConnectedLayer(10,'Name','fc21')];
lgraph = addLayers(lgraph,layers2);
lgraph = connectLayers(lgraph,'fc21','add/in2');plot(lgraph)%% Set the hyper parameters for unet training
options = trainingOptions('adam', ... % 优化算法Adam'MaxEpochs', 1000, ... % 最大训练次数'GradientThreshold', 1, ... % 梯度阈值'InitialLearnRate', 0.001, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率调整'LearnRateDropPeriod',700, ... % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ... % 学习率调整因子'L2Regularization', 0.001, ... % 正则化参数'ExecutionEnvironment', 'cpu',... % 训练环境'Verbose', 1, ... % 关闭优化过程'Plots', 'none'); % 画出曲线
%Code introduction
if nargin<2error('You have to supply all required input paremeters, which are ActualLabel, PredictedLabel')
end
if nargin < 3isPlot = true;
end%plotting the widest polygon
A1=1;
A2=1;
A3=1;
A4=1;
A5=1;
A6=1;a=[-A1 -A2/2 A3/2 A4 A5/2 -A6/2 -A1];
b=[0 -(A2*sqrt(3))/2 -(A3*sqrt(3))/2 0 (A5*sqrt(3))/2 (A6*sqrt(3))/2 0];if isPlotfigure plot(a, b, '--bo','LineWidth',1.3)axis([-1.5 1.5 -1.5 1.5]);set(gca,'FontName','Times New Roman','FontSize',12);hold on%grid
end% Calculating the True positive (TP), False Negative (FN), False Positive...
% (FP),True Negative (TN), Classification Accuracy (CA), Sensitivity (SE), Specificity (SP),...
% Kappa (K) and F measure (F_M) metrics
PositiveClass=max(ActualLabel);
NegativeClass=min(ActualLabel);
cp=classperf(ActualLabel,PredictedLabel,'Positive',PositiveClass,'Negative',NegativeClass);CM=cp.DiagnosticTable;TP=CM(1,1);FN=CM(2,1);FP=CM(1,2);TN=CM(2,2);CA=cp.CorrectRate;SE=cp.Sensitivity; %TP/(TP+FN)SP=cp.Specificity; %TN/(TN+FP)Pr=TP/(TP+FP);Re=TP/(TP+FN);F_M=2*Pr*Re/(Pr+Re);FPR=FP/(TN+FP);TPR=TP/(TP+FN);K=TP/(TP+FP+FN);[X1,Y1,T1,AUC] = perfcurve(ActualLabel,PredictedLabel,PositiveClass); %ActualLabel(1) means that the first class is assigned as positive class%plotting the calculated CA, SE, SP, AUC, K and F_M on polygon
x=[-CA -SE/2 SP/2 AUC K/2 -F_M/2 -CA];
y=[0 -(SE*sqrt(3))/2 -(SP*sqrt(3))/2 0 (K*sqrt(3))/2 (F_M*sqrt(3))/2 0];if isPlotplot(x, y, '-ko','LineWidth',1)set(gca,'FontName','Times New Roman','FontSize',12);
% shadowFill(x,y,pi/4,80)fill(x, y,[0.8706 0.9216 0.9804])
end%calculating the PAM value
% Get the number of vertices
n = length(x);
% Initialize the area
p_area = 0;
% Apply the formula
for i = 1 : n-1p_area = p_area + (x(i) + x(i+1)) * (y(i) - y(i+1));
end
p_area = abs(p_area)/2;%Normalization of the polygon area to one.
PA=p_area/2.59807;if isPlot%Plotting the Polygonplot(0,0,'r+')plot([0 -A1],[0 0] ,'--ko')text(-A1-0.3, 0,'CA','FontWeight','bold','FontName','Times New Roman')plot([0 -A2/2],[0 -(A2*sqrt(3))/2] ,'--ko')text(-0.59,-1.05,'SE','FontWeight','bold','FontName','Times New Roman')plot([0 A3/2],[0 -(A3*sqrt(3))/2] ,'--ko')text(0.5, -1.05,'SP','FontWeight','bold','FontName','Times New Roman')plot([0 A4],[0 0] ,'--ko')text(A4+0.08, 0,'AUC','FontWeight','bold','FontName','Times New Roman')plot([0 A5/2],[0 (A5*sqrt(3))/2] ,'--ko')text(0.5, 1.05,'J','FontWeight','bold','FontName','Times New Roman')daspect([1 1 1])
end
Metrics.PA=PA;
Metrics.CA=CA;
Metrics.SE=SE;
Metrics.SP=SP;
Metrics.AUC=AUC;
Metrics.K=K;
Metrics.F_M=F_M;printVar(:,1)=categories;
printVar(:,2)={PA, CA, SE, SP, AUC, K, F_M};
disp('预测结果打印:')
for i=1:length(categories)fprintf('%23s: %.2f \n', printVar{i,1}, printVar{i,2})
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691
相关文章:

JCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断 目录 JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断分类效果格拉姆矩阵图GAF-PCNN-MATTGASF-CNNGADF-CNN 基本介绍程序设计参考资料 分…...

新手教学系列——高效管理MongoDB数据:批量插入与更新的实战技巧
前言 在日常开发中,MongoDB作为一种灵活高效的NoSQL数据库,深受开发者喜爱。然而,如何高效地进行数据的批量插入和更新,却常常让人头疼。今天,我们将一起探讨如何使用MongoDB的bulk_write方法,简化我们的数据管理流程,让代码更加简洁高效。 常规做法:find、insertone…...
C# Winform 自定义事件实战
在C#的WinForms中,自定义事件是一种强大的工具,它允许你创建自己的事件,从而在特定条件下通知订阅者。自定义事件通常用于封装业务逻辑,使代码更加模块化和易于维护。下面我将通过一个实战例子来展示如何在WinForms中创建和使用自…...
Python通过继承实现多线程
本套课在线学习视频(网盘地址,保存到网盘即可免费观看): https://pan.quark.cn/s/677661ea63b3 本节将介绍如何利用Python中的thread模块和threading模块实现多线程,并通过继承threading.Thread类并重写run方…...

记一次项目经历
一、项目需求 1、设备四个工位,每个工位需要测试产品的电参数; 2、每个另外加四个位置温度; 3、显示4个通道电流曲线,16个通道温度曲线; 4、可切换工艺参数; 5、常规判定,测试数据保存到表格内&…...

Elasticsearch 8 支持别名查询
在 Elasticsearch 8 中,使用 Java 高级 REST 客户端进行别名管理的过程与之前的版本类似,但有一些API细节上的变化。以下是如何使用 Java 和 Elasticsearch 8 进行别名操作的例子: 引入依赖 确保你的项目中包含了 Elasticsearch 的高级 RES…...

【Spring Cloud】 使用Eureka实现服务注册与服务发现
文章目录 🍃前言🎍解决方案🚩关于注册中⼼🚩CAP理论🚩常见的注册中心 🎄Eureka🚩搭建 Eureka Server🎈创建Eureka-server ⼦模块🎈引入依赖🎈项目构建插件&am…...

JDK安装详细教程(以JDK17为例)
一、JDK的下载 1. 前往oracle官网下载JDK Java Archive Downloads - Java SE 17 在这里选择对应的JDK版本,我这里就直接选择JDK17的版本了。 然后下载对应的软件包,我这里采用的是Windows的安装程序。 点击上述圈起来的链接即可下载安装包,…...

安装nodejs | npm报错
nodejs安装步骤: 官网:https://nodejs.org/en/ 在官网下载nodejs: 双击下载下来的msi安装包,一直点next,我选的安装目录是默认的: 测试是否安装成功: 输入cmd打开命令提示符,输入node -v可以看到版本,说…...

聊点基础---Java和.NET开发技术异同全方位分析
1. C#语言基础 1.1 C#语法概览 欢迎来到C#的世界!对于刚从Java转过来的开发者来说,你会发现C#和Java有很多相似之处,但C#也有其独特的魅力和强大之处。让我们一起来探索C#的基本语法,并比较一下与Java的异同。 程序结构 C#程序…...
【C++】C++中SDKDDKVer.h和WinSDKVer.h函数库详解
目录 一.SDKDDKVer.h介绍 二.WinSDKVer.h介绍 三.WinSDKVer.h 和 SDKDDKVer.h 的区别 一.SDKDDKVer.h介绍 SDKDDKVer.h 是一个在 Windows 软件开发中常见的头文件,它用于定义软件开发工具包(SDK)和驱动开发工具包(DDK&…...
uni-app 蓝牙传输
https://www.cnblogs.com/ckfuture/p/16450418.html https://www.cnblogs.com/yangxiaobai123/p/16021058.html 字符串转base64:https://www.cnblogs.com/sunny3158/p/17312158.html 将 ArrayBuffer 对象转成 Base64 字符串:基础 - uni.arrayBufferT…...

MBR10200CT-ASEMI智能AI应用MBR10200CT
编辑:ll MBR10200CT-ASEMI智能AI应用MBR10200CT 型号:MBR10200CT 品牌:ASEMI 封装:TO-220 批号:最新 恢复时间:35ns 最大平均正向电流(IF):10A 最大循环峰值反向…...

力扣 爬楼梯
动态规划算法基础篇。 class Solution {public int climbStairs(int n) {int[] f new int[n 1];f[0] 1;f[1] 1;//当爬到n阶楼梯时,可知是由n-1阶或n-2阶楼梯而来for(int i 2; i < n; i) {f[i] f[i - 1] f[i - 2];//后面的每一阶种数由前两个状态得到}ret…...
java设计模式之:策略模式+工厂模式整合案例实战(一)
本文介绍项目中常用的策略模式工厂模式的案例,该案例是针对策略类比较少的情况;下一篇会讲解策略类比较多的案例,下面直接开始: 案例1:项目中对系统中的客户和销售进行事件通知(短信、邮件、钉钉) 首先要有通知的策略…...
国内Ubuntu安装 stable-diffusion教程,换成国内镜像
安装依赖: 首先更新系统并安装Python 3.10和pip: sudo apt update sudo apt install python3.10 python3-pip 设置Python虚拟环境(可选): 安装Python虚拟环境管理工具,并创建激活虚拟环境: su…...
JAVA final详细介绍
一、介绍 final 中文意思: 最后的,最终的. final 可以修饰类、属性、方法和局部变量, 在某些情况下,程序员可能有以下需求,就会使用到final: 1)当不希望类被继承时,可以用final修饰。 //如果我们要求A类不能被其他类继承 //可以使用fin…...

45、tomcat+课后实验
tomcat 1、tomcat tomcat和php一样,都是用来处理动态页面的。 tomcat也可以作为web应用服务器,开源的。 php .php tomcat .jsp nginx .html tomcat 是用Java代码写的程序,运行的是Java的web应用程序。 tomcat的特点和功能:…...

设计模式的七大原则
1.单一职责原则 单一职责原则(Single responsibility principle),即一个类应该只负责一项职责。如类A负责两个不同职责:职责1,职责2。当职责1需求变更而改变A时,可能造成职责2执行错误,所以需要将类A的粒度分解为A1、…...

ThreeJS-3D教学十五:ShaderMaterial(noise、random)
ThreeJS-3D教学十四:ShaderMaterial(length、fract、step) 上面这篇主要是操作 fragmentShader 片元着色器,实现对物体颜色的修改,这次咱们来看下修改 vertexShader 顶点着色器,这个其实就是位移各个顶点的位置。 接下来我们先介绍下 noise 噪声函数(Perlin Noise、Sim…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...