斐波那契查找算法
斐波那契查找原理,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列)
F[k]=F[k-1]+F[k-2],==>(F[k]-1) = (F[k-1]-1)+(F[k-2]-1)+1
说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段
从而得到中间位置mid = low+F(k-1)-1
package day7_11;import java.util.Arrays;public class Test {public static int maxSize = 20;public static void main(String[] args) {int[] arr = {1,8,10,89,1000,1234};int i = fibSearch(arr, 1234);System.out.println(i);}public static int[]fib(){int[] f = new int[maxSize];f[0] = 1;f[1] = 1;for(int i=2;i<maxSize;i++){f[i] = f[i-1] + f[i-2];}return f;}//使用非递归的方式/**** @param a 数组* @param key 我们需要查找的关键码(值)* @return 返回对应的下标,如果没有-1*/public static int fibSearch(int[] a,int key){int low = 0;int high = a.length-1;int k =0;int mid = 0;int f[] = fib();while (high > f[k] -1 ){k++;}//因为f[k]值可能大于a的长度,因此我们需要使用Arrays类,构造一个新的数组,并指向a[]//不足的部分会使用0填充int[] temp = Arrays.copyOf(a,f[k]);//实际上需求使用a数组最后的数填充temp//temp = {1,8,10,89,1000,1234,0,0,0} => {1,8,10,89,1000,1234,1234,1234,1234}for(int i=high+1;i<temp.length;i++){temp[i] = a[high];}//使用while来循环处理,找到我们的数keywhile (low<=high){mid = low+f[k-1]-1;if(key<temp[mid]){ //我们应该继续向数组的前面查找high = mid - 1;//为什么是k-1//说明//1.全部元素 = 前面的元素 + 后边的元素//2.f[k] = f[k-1] + f[k-2]//因为前面有f[k-1]个元素,所以可以继续拆分f[k-1] = f[k-2] + f[k-3]//即在f[k-1]的前面继续查找k--//即下次循环mid = f[k-1-1]-1k--;}else if(key>temp[mid]){low = mid + 1;//为什么是k-=2//说明//1.全部元素 = 前面的元素+后边元素//2.f[k] = f[k-1] + f[k-2]//3.因为后面我们有f[k-2]所以可以继续拆分f[k-1] = f[k-3] + f[k-4]//4.即在f[k-2]的前面进行查找k-=2//5.即下次循环mid = f[k-1-2]-1k -=2;}else{ //找到//需要确定,返回的是哪个下标if(mid<=high){return mid;}else{return high;}}}return -1;}}
相关文章:
斐波那契查找算法
斐波那契查找原理,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即midlowF(k-1)-1(F代表斐波那契数列) F[k]F[k-1]F[k-2],>(F[k]-1) (F[k-1]-1)(F[k-2]-1)1 说明:只要顺序表的长度为F[k]-1,则可以将该…...
CAN总线学习
can主要用于汽车、航空等控制行业,是一种串行异步通信方式,因为其相较于其他通信方式抗干扰能力更强,更加稳定。原因在于CAN不像其他通信方式那样,以高电平代表1,以低电平代表0,而是通过电压差来表示逻辑10…...
zookeeper基础知识学习
官网:Apache ZooKeeper 下载地址:Index of /dist/zookeeper/zookeeper-3.5.7Index of /dist/zookeeperIndex of /dist/zookeeper/zookeeper-3.5.7 ZK配置参数说明: 1、tickTime2000:通讯心跳时间,zookeeper服务器与客…...
C语言内存管理深度解析面试题及参考答案(2万字长文)
在嵌入式面试时,C语言内存管理是必问面试题,也是难点,相关知识点可以参考: C语言内存管理深度解析 下面整理了各种类型的C语言内存管理的面试题: 目录 全局变量和局部变量在内存中分别存储在哪个区域? 静态变量和全局变量有什么区别? 什么是作用域?…...
C++基础(二)
目录 1.类和对象 1.1类的定义 1.2访问限定符 1.3类域 2.实例化 2.1实例化概念 2.2对象大小 3.this指针 4.类的默认成员函数 4.1构造函数 4.2析构函数 4.5运算符重载 1.类和对象 1.1类的定义 类的定义格式 class为定义类的关键字,Stack为类的名字&…...
R 绘图 - 中文支持
R 绘图 - 中文支持 R 是一种广泛使用的统计和数据分析编程语言,它提供了强大的绘图功能。然而,R 的默认设置并不直接支持中文,这可能会在使用 R 进行绘图时造成困扰,尤其是当需要在图表中添加中文标签或标题时。本文将介绍如何在…...
使用Godot4组件制作竖版太空射击游戏_2D卷轴飞机射击-标题菜单及游戏结束界面(九)
文章目录 开发思路标题菜单界面标题菜单脚本代码结束菜单界面结束菜单脚本代码 使用Godot4组件制作竖版太空射击游戏_2D卷轴飞机射击(一) 使用Godot4组件制作竖版太空射击游戏_2D卷轴飞机射击-激光组件(二) 使用Godot4组件制作竖版…...
[终端安全]-6 移动终端之应用程序安全
笔者在终端安全专题前面的文章中介绍了移动终端硬件安全和操作系统安全,本文主要介绍移动终端应用安全。在本文最前面,笔者想先解答一位朋友的疑问,为什么需要费心打造一个完整的面面俱到的安全体系? 1 移动终端安全的重要性 移…...
基于望获实时Linux的高性能运动控制器适配
在快速迭代的工业自动化与机器人控制领域,高性能运动控制器无疑是实现极致精度与效率的核心引擎。实时操作系统(Real-Time Operating System,RTOS)凭借其低延迟与高度确定性的特性,成为这些高精度、高速度应用的首选平台。 望获…...
电气工程VR虚拟仿真实训平台以趣味化方式增强吸引力
在工业4.0时代和教育信息化的双重推动下,我们致力于推动实训课件的跨界合作与共创。VR实训课件不仅促进了不同领域、不同行业之间的紧密合作,更让学习变得生动直观。我们凭借3D技术生动、直观、形象的特点,开发了大量配套3D教材,让…...
数据结构(单链表(1))
前言 线性表中有着许多的结构,如顺序表和链表。而单链表则是链表的最基础的一种形式,下面就让我们对其做一个了解。 概念 概念:链表是⼀种物理存储结构上⾮连续、⾮顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次…...
STM32第十八课:SPIFlash
目录 需求一、SPI概要二、SPI配置1.开时钟2.配置IO3.配置&使能SPI 三、FLash操作函数1.SPI发送数据2.FLASH写使能3.FLASH等待操作完成4.FLASH页写操作5.FLASH读操作6.FLASH扇区擦除 四、需求实现 需求 通过SPI控制FLash进行数据的保存和删除。 一、SPI概要 在我们使用UA…...
如何使用IPython的并行计算能力处理大数据
目录 引言IPython概述 什么是IPythonIPython的特点 并行计算简介 什么是并行计算并行计算的优势 IPython的并行计算功能 IPython.parallel模块IPython并行架构 IPython的安装与配置 安装IPython配置并行环境 IPython并行计算的基础 任务分发与负载均衡核心概念:Cli…...
前端热门面试题二
你有使用过哪些前端构建工具(如Webpack、Gulp、Rollup)?并谈谈它们的特点和优势。 在前端开发中,构建工具扮演着至关重要的角色,它们能够自动化处理各种任务,如代码压缩、模块打包、代码转换、静态资源管理…...
Android TabLayout+ViewPager2如何优雅的实现联动详解
一、介绍 Android开发过程中,我们经常会遇到滑动导航栏的做法,之前的做法就是我们通过ViewGroup来转动,然后通过大量的自定义来完成,将导航栏item与viewpage 滑动,达到业务需求 二、现实方案 通过介绍,我…...
k8s快速部署一个网站
1)使用Deployment控制器部署镜像: kubectl create deployment web-demo --imagelizhenliang/web-demo:v1 kubectl get deployment,pods[rootk8s-matser ~]# kubectl get pods NAME READY STATUS RESTARTS A…...
期货量化交易客户端开源教学第四节——交易接口协议
指令介绍: 01----09:服务端发送到客户端指令 10----49:客户端发送操作指令 50----59:客户端与服务端通讯指令 60----99:股票接口与服务端交互指令 --------------------------------------------------- 02:商品行情 03:用户信息接收 04:用户资产信息接收 ----发送到…...
M1000 4G蓝牙网关:高速稳定,赋能物联网新体验
桂花网M1000的4G移动网络功能主要体现在以下几个方面: 一、高速稳定的数据传输 高速率:M1000支持4G移动网络,能够实现高速的数据传输。根据4G网络的技术标准,其理论上的最大下行速率可达到数百Mbps(如TD-LTE在20MHz带…...
中国高端水果元宇宙
高档榴莲通常指的是品质上乘、口感极佳、产地知名且价格较高的榴莲品种。榴莲因其独特的风味和营养价值而被誉为“水果之王”,在东南亚尤其受欢迎。以下是一些被认为是高档榴莲的品种: 1.**猫山王榴莲(Musang King or Mao Shan Wangÿ…...
MySQL:库操作
1. 创建数据库 create database [if not exists] name [create_specification], [create_specification]... []内为可选的选项 create_specification: character set charset_name -- 指定数据库采用的字符集 -- 数据库未来存储数据 collate collation_name -- 指定数据库字符…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
