python数据可视化(5)——绘制饼图
课程学习来源:b站up:【蚂蚁学python】
【课程链接:【【数据可视化】Python数据图表可视化入门到实战】】
【课程资料链接:【链接】】
Python绘制饼图分析北京天气
饼图,是一个划分为几个扇形的圆形统计图表,能够直接以图形的方式直接显示各个组成部分所占比例
目的:查看2019年北京天气数据,使用饼图查看天气、风向、空气质量的数据对比
1.编写函数,创建一个pyecharts饼图对象
from pyecharts import options as opts
from pyecharts.charts import Pie
def create_pie(datas, title) -> Pie:"""创建饼图对象@param datas:数据,形式为[('晴',115), ('多云',78), ('晴转多云',39)]@param title:图表的标题"""pie = Pie()pie.add("", datas)pie.set_global_opts( # 设置全局参数title_opts = opts.TitleOpts(title = title), # 图标标题legend_opts = opts.LegendOpts(pos_right = "right")# 图标标签放在右侧)pie.set_series_opts(label_opts = opts.LabelOpts(formatter = "{b}: {c}: {d}%"))# b:名称# c:数量# d:百分比return pie
2.读取北京2019天气数据
import pandas as pddf = pd.read_csv("../DATA_POOL/PY_DATA/ant-learn-visualization-master/datas/beijing_tianqi/beijing_tianqi_2019.csv")df.head(5)
| ymd | bWendu | yWendu | tianqi | fengxiang | fengli | aqi | aqiInfo | aqiLevel | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 2019-01-01 | 1℃ | -10℃ | 晴~多云 | 西北风 | 1级 | 56 | 良 | 2 |
| 1 | 2019-01-02 | 1℃ | -9℃ | 多云 | 东北风 | 1级 | 60 | 良 | 2 |
| 2 | 2019-01-03 | 2℃ | -7℃ | 霾 | 东北风 | 1级 | 165 | 中度污染 | 4 |
| 3 | 2019-01-04 | 2℃ | -7℃ | 晴 | 西北风 | 2级 | 50 | 优 | 1 |
| 4 | 2019-01-05 | 0℃ | -8℃ | 多云 | 东北风 | 2级 | 29 | 优 | 1 |
3.绘制饼图查看天气类型对比
df_tianqi = df.groupby("tianqi").size().sort_values(ascending = False)
# Flase表示递增为false,即选择递减
# 按照天气进行分组
df_tianqi # series
tianqi
晴 115
多云 78
晴~多云 39
多云~晴 34
小雨~多云 11
多云~雷阵雨 10
霾 8
多云~小雨 7
雷阵雨~多云 7
雷阵雨 7
阴~多云 5
多云~阴 4
小雨 4
雷阵雨~中雨 4
小雪~多云 4
阴~小雨 3
雷阵雨~晴 2
雷阵雨~小雨 2
霾~多云 2
中雨~多云 2
阴 2
中雨~小雨 2
多云~中雨 2
中雨~雷阵雨 2
阴~中雨 1
晴~霾 1
小雪 1
小雨~阴 1
小雨~晴 1
多云~中雪 1
雾~晴 1
霾~晴 1
霾~雾 1
dtype: int64
datas = list(zip(df_tianqi.index.to_list(), df_tianqi.to_list()))
# zip可以拼接两个list,形成一个二元组list
datas
[('晴', 115),('多云', 78),('晴~多云', 39),('多云~晴', 34),('小雨~多云', 11),('多云~雷阵雨', 10),('霾', 8),('多云~小雨', 7),('雷阵雨~多云', 7),('雷阵雨', 7),('阴~多云', 5),('多云~阴', 4),('小雨', 4),('雷阵雨~中雨', 4),('小雪~多云', 4),('阴~小雨', 3),('雷阵雨~晴', 2),('雷阵雨~小雨', 2),('霾~多云', 2),('中雨~多云', 2),('阴', 2),('中雨~小雨', 2),('多云~中雨', 2),('中雨~雷阵雨', 2),('阴~中雨', 1),('晴~霾', 1),('小雪', 1),('小雨~阴', 1),('小雨~晴', 1),('多云~中雪', 1),('雾~晴', 1),('霾~晴', 1),('霾~雾', 1)]
pie = create_pie(datas, "饼图=-天气对比")from IPython.display import HTML# 同上,读取 HTML 文件内容
# bar.render()的值是一个路径,以字符串形式表示
with open(pie.render(), 'r', encoding='utf-8') as file:html_content = file.read()# 直接在 JupyterLab 中渲染 HTML
HTML(html_content)

4.绘制饼图查看风向数据比例对比
df.head()
| ymd | bWendu | yWendu | tianqi | fengxiang | fengli | aqi | aqiInfo | aqiLevel | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 2019-01-01 | 1℃ | -10℃ | 晴~多云 | 西北风 | 1级 | 56 | 良 | 2 |
| 1 | 2019-01-02 | 1℃ | -9℃ | 多云 | 东北风 | 1级 | 60 | 良 | 2 |
| 2 | 2019-01-03 | 2℃ | -7℃ | 霾 | 东北风 | 1级 | 165 | 中度污染 | 4 |
| 3 | 2019-01-04 | 2℃ | -7℃ | 晴 | 西北风 | 2级 | 50 | 优 | 1 |
| 4 | 2019-01-05 | 0℃ | -8℃ | 多云 | 东北风 | 2级 | 29 | 优 | 1 |
df_fengxiang = df.groupby("fengxiang").size().sort_values(ascending = False)
datas = list(zip(df_fengxiang.index.to_list(), df_fengxiang.to_list()))
pie = create_pie(datas, "饼图-风向")from IPython.display import HTML# 同上,读取 HTML 文件内容
# bar.render()的值是一个路径,以字符串形式表示
with open(pie.render(), 'r', encoding='utf-8') as file:html_content = file.read()# 直接在 JupyterLab 中渲染 HTML
HTML(html_content)

5.绘制饼图查看空气质量对比
df.head()
| ymd | bWendu | yWendu | tianqi | fengxiang | fengli | aqi | aqiInfo | aqiLevel | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 2019-01-01 | 1℃ | -10℃ | 晴~多云 | 西北风 | 1级 | 56 | 良 | 2 |
| 1 | 2019-01-02 | 1℃ | -9℃ | 多云 | 东北风 | 1级 | 60 | 良 | 2 |
| 2 | 2019-01-03 | 2℃ | -7℃ | 霾 | 东北风 | 1级 | 165 | 中度污染 | 4 |
| 3 | 2019-01-04 | 2℃ | -7℃ | 晴 | 西北风 | 2级 | 50 | 优 | 1 |
| 4 | 2019-01-05 | 0℃ | -8℃ | 多云 | 东北风 | 2级 | 29 | 优 | 1 |
df_aqiInfo = df.groupby("aqiInfo").size().sort_values(ascending=False)
datas = list(zip(df_aqiInfo.index.to_list(), df_aqiInfo.to_list()))
pie = create_pie(datas, "饼图-空气质量")from IPython.display import HTML# 同上,读取 HTML 文件内容
# bar.render()的值是一个路径,以字符串形式表示
with open(pie.render(), 'r', encoding='utf-8') as file:html_content = file.read()# 直接在 JupyterLab 中渲染 HTML
HTML(html_content)

相关文章:
python数据可视化(5)——绘制饼图
课程学习来源:b站up:【蚂蚁学python】 【课程链接:【【数据可视化】Python数据图表可视化入门到实战】】 【课程资料链接:【链接】】 Python绘制饼图分析北京天气 饼图,是一个划分为几个扇形的圆形统计图表ÿ…...
实习随笔【iviews的Select实现‘与全部互斥’的多选】
在实习中,遇到了如下需求,要求如下: 上面提到了一个需求为,选择全部与选择一个或者多个互斥,我们来看一下如何解决 核心代码 监听value的变化,如果含有‘全部’,且数组长度>1,则删…...
网站架构核心要素
高性能 技术指标:响应时间、吞吐量、并发数 前端优化手段 页面布局:css在前,js在后通信数据量:数据尽量精简缓存:浏览器缓存、cdn异步:ajax 后端优化手段 缓存:反向代理、redis异步&#x…...
XML 解析异常问题解决
问题描述 The parser has encountered more than "64000" entity expansions in this document; this is the limit imposed by the JDK. 在运行 Java 应用程序时,出现了 XML 解析异常。具体表现为: 报错信息显示无法创建 StAX(S…...
C# 匿名方法、Lambda、Linq概念及联系
匿名方法、Lambda表达式与LINQ 匿名方法 概念: 匿名方法是没有名称的方法实现,通常与委托关联使用。它提供了一种在不创建独立命名方法的情况下编写代码块的方式。 语法: delegate void MyDelegate(string message);MyDelegate del dele…...
django ninja get not allowed 能用 put delete
遇到一个奇怪的问题,django-ninja 编写的 get post 方法不能使用 # 获取Material router.get(/material, responseList[MaterialSchemaOut]) paginate(MyPagination) def list_material(request, filters: Filters Query(...)):qs retrieve(request, Material, f…...
服务器操作集合
服务器使用PC作为代理访问外网 1、PC上启动代理,比如nginx 下载nginx:http://nginx.org/en/download.html 修改配置文件,在conf下: http {include mime.types;default_type application/octet-stream;sendfile o…...
论文阅读【时空+大模型】ST-LLM(MDM2024)
论文阅读【时空大模型】ST-LLM(MDM2024) 论文链接:Spatial-Temporal Large Language Model for Traffic Prediction 代码仓库:https://github.com/ChenxiLiu-HNU/ST-LLM 发表于MDM2024(Mobile Data Management…...
【linux基础】linux远程传输三种免交互方式
linux远程传输三种免交互方式 文章目录 linux远程传输三种免交互方式1、使用sshpass工具2、使用expect脚本来输入密码3、SSH 密钥对 1、使用sshpass工具 建立信任关系的做法是最方便和安全的做法,但是在有些场景下(比如远端的authorized_keys是不能随意更改的)&…...
MySQL篇:事务
1.四大特性 首先,事务的四大特性:ACID(原子性,一致性,隔离性,持久性) 在InnoDB引擎中,是怎么来保证这四个特性的呢? 持久性是通过 redo log (重做日志&…...
处理在 electron 中使用开启了懒加载的 el-image 后,窗口最大化或窗口尺寸变化后图片无法显示的问题
文章目录 1、问题描述2、详情动图3、解决思路4、解决方案5、效果展示 1、问题描述 在 electron 中使用 el-image 时,开启了懒加载后,发现只有当窗口滚动后,图片才会显示,即便图片已经处于窗口的可视区域。当拖动窗口使其尺寸变大…...
Electron 进程间通信
文章目录 渲染进程到主进程(单向)渲染进程到主进程(双向)主进程到渲染进程 (单向,可模拟双向) 渲染进程到主进程(单向) send (render 发送)on &a…...
0基础学python-8:if,while,for
目录 前言: 一、选择循环结构 1.if条件语句 2.while 3.for循环 4.break语句 5.continue语句 前言: if、while 和 for 是 Python 中常用的控制流结构,它们分别用于条件判断、循环执行和迭代遍历。这些关键字帮助程序根据条件和数据进行选…...
低空经济持续发热,无人机培训考证就业市场及前景剖析
随着科技的不断进步和社会需求的日益增长,低空经济已成为全球及我国经济增长的新引擎。作为低空经济的重要组成部分,无人机技术因其广泛的应用领域和显著的经济效益,受到了社会各界的广泛关注。为满足市场对无人机人才的需求,无人…...
[IDEA插件] JarEditor 编辑jar包(直接新增、修改、删除jar包内的class文件)
文章目录 1. 安装插件 JarEditor2. 在IDEA中添加外部JAR包3. JarEditor 使用介绍 之前我们需要修改jar内文件的时候需要解压jar包,反编译class,新建java源文件,修改代码,再编译成class,替换jar包内的class文件。 现在…...
JavaScript系列:JS实现复制粘贴文字以及图片
文章目录 一. 基于 Clipboard API 复制文字(推荐)基本概念主要方法使用限制实际应用示例 二、基于 document.execCommand(copy)缺陷实际应用示例说明 三、复制图片功能四、封装 一. 基于 Clipboard API 复制文字(推荐) 基本概念 …...
音视频入门基础:H.264专题(14)——计算视频帧率的公式
一、引言 通过FFmpeg命令可以获取到H.264裸流文件的视频帧率: 在vlc中也可以获取到视频帧率(vlc底层也使用了FFmpeg进行解码): 所以FFmpeg和vlc是怎样获取到H.264编码的视频的帧率呢?它们其实是通过SPS中的VUI parame…...
LeetCode-返回链表倒数第K个节点、链表的回文结构,相交链表
一、返回链表倒数第k个节点 . - 力扣(LeetCode) 本体思路参展寻找中间节点的方法,寻找中间节点是定义快慢指针,快指针每次走两步,慢指针每次走一步,当快指针为空或者快指针的下一个节点是空时,…...
Linux 网络配置与连接
一、网络配置 1.1 ifconfig 网卡配置查询 ifconfig #查看所有启动的网络接口信息 ifconfig 指定的网卡 #查看指定网络接口信息 1.2 修改网络配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 #ens33网络配置文…...
5. 基于Embedding实现超越elasticsearch高级搜索
Embedding介绍 Embedding是向量的意思,向量可以理解为平面坐标中的一个坐标点(x,y),在编程领域,一个二维向量就是一个大小为float类型的数组。也可以用三维坐标系中的向量表示一个空间中的点。在机器学习中,向量通常用于表示数据的特征。 向量…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
