python数据可视化(5)——绘制饼图
课程学习来源:b站up:【蚂蚁学python】
【课程链接:【【数据可视化】Python数据图表可视化入门到实战】】
【课程资料链接:【链接】】
Python绘制饼图分析北京天气
饼图,是一个划分为几个扇形的圆形统计图表,能够直接以图形的方式直接显示各个组成部分所占比例
目的:查看2019年北京天气数据,使用饼图查看天气、风向、空气质量的数据对比
1.编写函数,创建一个pyecharts饼图对象
from pyecharts import options as opts
from pyecharts.charts import Pie
def create_pie(datas, title) -> Pie:"""创建饼图对象@param datas:数据,形式为[('晴',115), ('多云',78), ('晴转多云',39)]@param title:图表的标题"""pie = Pie()pie.add("", datas)pie.set_global_opts( # 设置全局参数title_opts = opts.TitleOpts(title = title), # 图标标题legend_opts = opts.LegendOpts(pos_right = "right")# 图标标签放在右侧)pie.set_series_opts(label_opts = opts.LabelOpts(formatter = "{b}: {c}: {d}%"))# b:名称# c:数量# d:百分比return pie
2.读取北京2019天气数据
import pandas as pddf = pd.read_csv("../DATA_POOL/PY_DATA/ant-learn-visualization-master/datas/beijing_tianqi/beijing_tianqi_2019.csv")df.head(5)
ymd | bWendu | yWendu | tianqi | fengxiang | fengli | aqi | aqiInfo | aqiLevel | |
---|---|---|---|---|---|---|---|---|---|
0 | 2019-01-01 | 1℃ | -10℃ | 晴~多云 | 西北风 | 1级 | 56 | 良 | 2 |
1 | 2019-01-02 | 1℃ | -9℃ | 多云 | 东北风 | 1级 | 60 | 良 | 2 |
2 | 2019-01-03 | 2℃ | -7℃ | 霾 | 东北风 | 1级 | 165 | 中度污染 | 4 |
3 | 2019-01-04 | 2℃ | -7℃ | 晴 | 西北风 | 2级 | 50 | 优 | 1 |
4 | 2019-01-05 | 0℃ | -8℃ | 多云 | 东北风 | 2级 | 29 | 优 | 1 |
3.绘制饼图查看天气类型对比
df_tianqi = df.groupby("tianqi").size().sort_values(ascending = False)
# Flase表示递增为false,即选择递减
# 按照天气进行分组
df_tianqi # series
tianqi
晴 115
多云 78
晴~多云 39
多云~晴 34
小雨~多云 11
多云~雷阵雨 10
霾 8
多云~小雨 7
雷阵雨~多云 7
雷阵雨 7
阴~多云 5
多云~阴 4
小雨 4
雷阵雨~中雨 4
小雪~多云 4
阴~小雨 3
雷阵雨~晴 2
雷阵雨~小雨 2
霾~多云 2
中雨~多云 2
阴 2
中雨~小雨 2
多云~中雨 2
中雨~雷阵雨 2
阴~中雨 1
晴~霾 1
小雪 1
小雨~阴 1
小雨~晴 1
多云~中雪 1
雾~晴 1
霾~晴 1
霾~雾 1
dtype: int64
datas = list(zip(df_tianqi.index.to_list(), df_tianqi.to_list()))
# zip可以拼接两个list,形成一个二元组list
datas
[('晴', 115),('多云', 78),('晴~多云', 39),('多云~晴', 34),('小雨~多云', 11),('多云~雷阵雨', 10),('霾', 8),('多云~小雨', 7),('雷阵雨~多云', 7),('雷阵雨', 7),('阴~多云', 5),('多云~阴', 4),('小雨', 4),('雷阵雨~中雨', 4),('小雪~多云', 4),('阴~小雨', 3),('雷阵雨~晴', 2),('雷阵雨~小雨', 2),('霾~多云', 2),('中雨~多云', 2),('阴', 2),('中雨~小雨', 2),('多云~中雨', 2),('中雨~雷阵雨', 2),('阴~中雨', 1),('晴~霾', 1),('小雪', 1),('小雨~阴', 1),('小雨~晴', 1),('多云~中雪', 1),('雾~晴', 1),('霾~晴', 1),('霾~雾', 1)]
pie = create_pie(datas, "饼图=-天气对比")from IPython.display import HTML# 同上,读取 HTML 文件内容
# bar.render()的值是一个路径,以字符串形式表示
with open(pie.render(), 'r', encoding='utf-8') as file:html_content = file.read()# 直接在 JupyterLab 中渲染 HTML
HTML(html_content)
4.绘制饼图查看风向数据比例对比
df.head()
ymd | bWendu | yWendu | tianqi | fengxiang | fengli | aqi | aqiInfo | aqiLevel | |
---|---|---|---|---|---|---|---|---|---|
0 | 2019-01-01 | 1℃ | -10℃ | 晴~多云 | 西北风 | 1级 | 56 | 良 | 2 |
1 | 2019-01-02 | 1℃ | -9℃ | 多云 | 东北风 | 1级 | 60 | 良 | 2 |
2 | 2019-01-03 | 2℃ | -7℃ | 霾 | 东北风 | 1级 | 165 | 中度污染 | 4 |
3 | 2019-01-04 | 2℃ | -7℃ | 晴 | 西北风 | 2级 | 50 | 优 | 1 |
4 | 2019-01-05 | 0℃ | -8℃ | 多云 | 东北风 | 2级 | 29 | 优 | 1 |
df_fengxiang = df.groupby("fengxiang").size().sort_values(ascending = False)
datas = list(zip(df_fengxiang.index.to_list(), df_fengxiang.to_list()))
pie = create_pie(datas, "饼图-风向")from IPython.display import HTML# 同上,读取 HTML 文件内容
# bar.render()的值是一个路径,以字符串形式表示
with open(pie.render(), 'r', encoding='utf-8') as file:html_content = file.read()# 直接在 JupyterLab 中渲染 HTML
HTML(html_content)
5.绘制饼图查看空气质量对比
df.head()
ymd | bWendu | yWendu | tianqi | fengxiang | fengli | aqi | aqiInfo | aqiLevel | |
---|---|---|---|---|---|---|---|---|---|
0 | 2019-01-01 | 1℃ | -10℃ | 晴~多云 | 西北风 | 1级 | 56 | 良 | 2 |
1 | 2019-01-02 | 1℃ | -9℃ | 多云 | 东北风 | 1级 | 60 | 良 | 2 |
2 | 2019-01-03 | 2℃ | -7℃ | 霾 | 东北风 | 1级 | 165 | 中度污染 | 4 |
3 | 2019-01-04 | 2℃ | -7℃ | 晴 | 西北风 | 2级 | 50 | 优 | 1 |
4 | 2019-01-05 | 0℃ | -8℃ | 多云 | 东北风 | 2级 | 29 | 优 | 1 |
df_aqiInfo = df.groupby("aqiInfo").size().sort_values(ascending=False)
datas = list(zip(df_aqiInfo.index.to_list(), df_aqiInfo.to_list()))
pie = create_pie(datas, "饼图-空气质量")from IPython.display import HTML# 同上,读取 HTML 文件内容
# bar.render()的值是一个路径,以字符串形式表示
with open(pie.render(), 'r', encoding='utf-8') as file:html_content = file.read()# 直接在 JupyterLab 中渲染 HTML
HTML(html_content)
相关文章:

python数据可视化(5)——绘制饼图
课程学习来源:b站up:【蚂蚁学python】 【课程链接:【【数据可视化】Python数据图表可视化入门到实战】】 【课程资料链接:【链接】】 Python绘制饼图分析北京天气 饼图,是一个划分为几个扇形的圆形统计图表ÿ…...

实习随笔【iviews的Select实现‘与全部互斥’的多选】
在实习中,遇到了如下需求,要求如下: 上面提到了一个需求为,选择全部与选择一个或者多个互斥,我们来看一下如何解决 核心代码 监听value的变化,如果含有‘全部’,且数组长度>1,则删…...
网站架构核心要素
高性能 技术指标:响应时间、吞吐量、并发数 前端优化手段 页面布局:css在前,js在后通信数据量:数据尽量精简缓存:浏览器缓存、cdn异步:ajax 后端优化手段 缓存:反向代理、redis异步&#x…...
XML 解析异常问题解决
问题描述 The parser has encountered more than "64000" entity expansions in this document; this is the limit imposed by the JDK. 在运行 Java 应用程序时,出现了 XML 解析异常。具体表现为: 报错信息显示无法创建 StAX(S…...
C# 匿名方法、Lambda、Linq概念及联系
匿名方法、Lambda表达式与LINQ 匿名方法 概念: 匿名方法是没有名称的方法实现,通常与委托关联使用。它提供了一种在不创建独立命名方法的情况下编写代码块的方式。 语法: delegate void MyDelegate(string message);MyDelegate del dele…...
django ninja get not allowed 能用 put delete
遇到一个奇怪的问题,django-ninja 编写的 get post 方法不能使用 # 获取Material router.get(/material, responseList[MaterialSchemaOut]) paginate(MyPagination) def list_material(request, filters: Filters Query(...)):qs retrieve(request, Material, f…...

服务器操作集合
服务器使用PC作为代理访问外网 1、PC上启动代理,比如nginx 下载nginx:http://nginx.org/en/download.html 修改配置文件,在conf下: http {include mime.types;default_type application/octet-stream;sendfile o…...

论文阅读【时空+大模型】ST-LLM(MDM2024)
论文阅读【时空大模型】ST-LLM(MDM2024) 论文链接:Spatial-Temporal Large Language Model for Traffic Prediction 代码仓库:https://github.com/ChenxiLiu-HNU/ST-LLM 发表于MDM2024(Mobile Data Management…...
【linux基础】linux远程传输三种免交互方式
linux远程传输三种免交互方式 文章目录 linux远程传输三种免交互方式1、使用sshpass工具2、使用expect脚本来输入密码3、SSH 密钥对 1、使用sshpass工具 建立信任关系的做法是最方便和安全的做法,但是在有些场景下(比如远端的authorized_keys是不能随意更改的)&…...

MySQL篇:事务
1.四大特性 首先,事务的四大特性:ACID(原子性,一致性,隔离性,持久性) 在InnoDB引擎中,是怎么来保证这四个特性的呢? 持久性是通过 redo log (重做日志&…...

处理在 electron 中使用开启了懒加载的 el-image 后,窗口最大化或窗口尺寸变化后图片无法显示的问题
文章目录 1、问题描述2、详情动图3、解决思路4、解决方案5、效果展示 1、问题描述 在 electron 中使用 el-image 时,开启了懒加载后,发现只有当窗口滚动后,图片才会显示,即便图片已经处于窗口的可视区域。当拖动窗口使其尺寸变大…...
Electron 进程间通信
文章目录 渲染进程到主进程(单向)渲染进程到主进程(双向)主进程到渲染进程 (单向,可模拟双向) 渲染进程到主进程(单向) send (render 发送)on &a…...
0基础学python-8:if,while,for
目录 前言: 一、选择循环结构 1.if条件语句 2.while 3.for循环 4.break语句 5.continue语句 前言: if、while 和 for 是 Python 中常用的控制流结构,它们分别用于条件判断、循环执行和迭代遍历。这些关键字帮助程序根据条件和数据进行选…...

低空经济持续发热,无人机培训考证就业市场及前景剖析
随着科技的不断进步和社会需求的日益增长,低空经济已成为全球及我国经济增长的新引擎。作为低空经济的重要组成部分,无人机技术因其广泛的应用领域和显著的经济效益,受到了社会各界的广泛关注。为满足市场对无人机人才的需求,无人…...

[IDEA插件] JarEditor 编辑jar包(直接新增、修改、删除jar包内的class文件)
文章目录 1. 安装插件 JarEditor2. 在IDEA中添加外部JAR包3. JarEditor 使用介绍 之前我们需要修改jar内文件的时候需要解压jar包,反编译class,新建java源文件,修改代码,再编译成class,替换jar包内的class文件。 现在…...
JavaScript系列:JS实现复制粘贴文字以及图片
文章目录 一. 基于 Clipboard API 复制文字(推荐)基本概念主要方法使用限制实际应用示例 二、基于 document.execCommand(copy)缺陷实际应用示例说明 三、复制图片功能四、封装 一. 基于 Clipboard API 复制文字(推荐) 基本概念 …...

音视频入门基础:H.264专题(14)——计算视频帧率的公式
一、引言 通过FFmpeg命令可以获取到H.264裸流文件的视频帧率: 在vlc中也可以获取到视频帧率(vlc底层也使用了FFmpeg进行解码): 所以FFmpeg和vlc是怎样获取到H.264编码的视频的帧率呢?它们其实是通过SPS中的VUI parame…...

LeetCode-返回链表倒数第K个节点、链表的回文结构,相交链表
一、返回链表倒数第k个节点 . - 力扣(LeetCode) 本体思路参展寻找中间节点的方法,寻找中间节点是定义快慢指针,快指针每次走两步,慢指针每次走一步,当快指针为空或者快指针的下一个节点是空时,…...

Linux 网络配置与连接
一、网络配置 1.1 ifconfig 网卡配置查询 ifconfig #查看所有启动的网络接口信息 ifconfig 指定的网卡 #查看指定网络接口信息 1.2 修改网络配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 #ens33网络配置文…...
5. 基于Embedding实现超越elasticsearch高级搜索
Embedding介绍 Embedding是向量的意思,向量可以理解为平面坐标中的一个坐标点(x,y),在编程领域,一个二维向量就是一个大小为float类型的数组。也可以用三维坐标系中的向量表示一个空间中的点。在机器学习中,向量通常用于表示数据的特征。 向量…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...