【AIGC】二、mac本地采用GPU启动keras运算
mac本地采用GPU启动keras运算
- 一、问题背景
- 二、技术背景
- 三、实验验证
- 本机配置
- 安装PlaidML
- 安装plaidml-keras
- 配置默认显卡
- 运行采用 CPU运算的代码
- step1 先导入keras包,导入数据cifar10,这里可能涉及外网下载,有问题可以参考[keras使用基础问题](https://editor.csdn.net/md/?articleId=140331142)
- step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载,有问题可以参考[keras使用基础问题](https://editor.csdn.net/md/?articleId=140331142)
- step3 模型编译
- step4 进行一次预测
- step5 进行10次预测
- 运行采用 GPU运算的代码
- 采用显卡metal_intel(r)_uhd_graphics_630.0
- step0 通过plaidml导入keras,之后再做keras相关操作
- step1 先导入keras包,导入数据cifar10
- step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
- step3 模型编译
- step4 进行一次预测
- step5 进行10次预测
- 采用显卡metal_amd_radeon_pro_5300m.0
- step0 通过plaidml导入keras,之后再做keras相关操作
- step1 先导入keras包,导入数据cifar10
- step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
- step3 模型编译
- step4 进行一次预测
- step5 进行10次预测
- 四、评估讨论
一、问题背景
从上一篇文章中,我们已经发现在大模型的运算中,采用cpu进行运算时,对于cpu的使用消耗很大。因此我们这里会想到如果机器中有GPU显卡,如何能够发挥显卡在向量运算中的优势,将机器学习相关的运算做的又快又好。
二、技术背景
我们知道当前主流的支持机器学习比较好的显卡为 Nvida系列的显卡,俗称 N卡,但是在mac机器上,通常集成的都是 AMD系列的显卡。两种不同的硬件指令集的差异导致上层需要有不同的实现技术。
但是在 AMD显卡中,有一种PlaidML的技术,通过该插件,可以封装不同显卡的差异。
PlaidML项目地址:https://github.com/plaidml/plaidml
目前 PlaidML 已经支持 Keras、ONNX 和 nGraph 等工具,直接用 Keras 建个模,MacBook 轻轻松松调用 GPU。
通过这款名为 PlaidML 的工具,不论英伟达、AMD 还是英特尔显卡都可以轻松搞定深度学习训练了。
参考:Mac使用PlaidML加速强化学习训练
三、实验验证
本次操作,对于一个常规的keras的算法,分别在cpu和 gpu下进行多轮计算,统计耗时。进行对比统计。
本机配置
本次采用的mac机器的软件、硬件参数如下
安装PlaidML
由于安装依赖包的过程,需要有命令交互,因此安装plaidML包操作在命令行进行,代码执行在 jupyter中进行。
由于采用虚拟环境时会jupyter会有需要创建 kernal的技术点,因此这里建议暂时直接用原python环境进行验证。了解jupyter在虚拟环境的配置特点的同学可以尝试在虚拟环境中操作。
安装plaidml-keras
pip3 install plaidml-keras
笔者在采用命令 pip3 install plaidml-keras 安装最新版本plaidml-keras为0.7.0后,在执行初始化操作时遇到bug,后续降为0.6.4执行正常。但是后续再次安装为 0.7.0,又正常了。
plaidml in github
配置默认显卡
在命令行执行
plaidml-setup
交互内容如下
(venv) tsingj@tsingjdeMacBook-Pro-2 ~ # plaidml-setupPlaidML Setup (0.6.4)Thanks for using PlaidML!Some Notes:* Bugs and other issues: https://github.com/plaidml/plaidml* Questions: https://stackoverflow.com/questions/tagged/plaidml* Say hello: https://groups.google.com/forum/#!forum/plaidml-dev* PlaidML is licensed under the Apache License 2.0Default Config Devices:metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)Experimental Config Devices:llvm_cpu.0 : CPU (LLVM)metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)opencl_amd_radeon_pro_5300m_compute_engine.0 : AMD AMD Radeon Pro 5300M Compute Engine (OpenCL)opencl_cpu.0 : Intel CPU (OpenCL)opencl_intel_uhd_graphics_630.0 : Intel Inc. Intel(R) UHD Graphics 630 (OpenCL)metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)Using experimental devices can cause poor performance, crashes, and other nastiness.Enable experimental device support? (y,n)[n]:
列举现实当前可以支持的显卡列表,选择默认支持支持的2个显卡,还是试验阶段所有支持的6 种硬件。
可以看到默认支持的 2 个显卡即最初截图中现实的两个显卡。为了测试稳定起见,这里先选择N,回车。
Multiple devices detected (You can override by setting PLAIDML_DEVICE_IDS).
Please choose a default device:1 : metal_intel(r)_uhd_graphics_630.02 : metal_amd_radeon_pro_5300m.0Default device? (1,2)[1]:1Selected device:metal_intel(r)_uhd_graphics_630.0
对于默认选择的设置,设置一个默认设备,这里我们先将metal_intel®_uhd_graphics_630.0设置为默认设备,当然这个设备其实性能比较差,后续我们会再将metal_amd_radeon_pro_5300m.0设置为默认设备进行对比。
写入 1 之后,回车。
Almost done. Multiplying some matrices...
Tile code:function (B[X,Z], C[Z,Y]) -> (A) { A[x,y : X,Y] = +(B[x,z] * C[z,y]); }
Whew. That worked.Save settings to /Users/tsingj/.plaidml? (y,n)[y]:y
Success!
回车,将配置信息写入默认配置文件中,完成配置。
运行采用 CPU运算的代码
本节中采用jupyter进行一个简单算法代码的运行,统计其时间。
step1 先导入keras包,导入数据cifar10,这里可能涉及外网下载,有问题可以参考keras使用基础问题
#!/usr/bin/env python
import numpy as np
import os
import time
import keras
import keras.applications as kapp
from keras.datasets import cifar10
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
batch_size = 8
x_train = x_train[:batch_size]
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)
注意,这里默认的keral的运算后端应该是采用了tenserflow,查看输出
2024-07-11 14:36:02.753107: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载,有问题可以参考keras使用基础问题
model = kapp.VGG19()
step3 模型编译
model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
step4 进行一次预测
print("Running initial batch (compiling tile program)")
y = model.predict(x=x_train, batch_size=batch_size)
Running initial batch (compiling tile program)
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 1s/step
step5 进行10次预测
# Now start the clock and run 10 batchesprint("Timing inference...")
start = time.time()
for i in range(10):y = model.predict(x=x_train, batch_size=batch_size)print("Ran in {} seconds".format(time.time() - start))
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 891ms/step
Ran in 0.9295139312744141 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 923ms/step
Ran in 1.8894760608673096 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 893ms/step
Ran in 2.818492889404297 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 932ms/step
Ran in 3.7831668853759766 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 892ms/step
Ran in 4.71358585357666 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 860ms/step
Ran in 5.609835863113403 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 878ms/step
Ran in 6.5182459354400635 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 871ms/step
Ran in 7.423128128051758 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 896ms/step
Ran in 8.352543830871582 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 902ms/step
Ran in 9.288795948028564 seconds
运行采用 GPU运算的代码
采用显卡metal_intel®_uhd_graphics_630.0
step0 通过plaidml导入keras,之后再做keras相关操作
# Importing PlaidML. Make sure you follow this order
import plaidml.keras
plaidml.keras.install_backend()
import os
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
注:
1、在采用plaidml=0.7.0 版本时,plaidml.keras.install_backend()操作会发生报错
2、这步操作,会通过plaidml导入keras,将后台运算引擎设置为plaidml,而不再采用tenserflow
step1 先导入keras包,导入数据cifar10
#!/usr/bin/env python
import numpy as np
import os
import time
import keras
import keras.applications as kapp
from keras.datasets import cifar10
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
batch_size = 8
x_train = x_train[:batch_size]
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)
step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
model = kapp.VGG19()
首次运行输出显卡信息
INFO:plaidml:Opening device “metal_intel®_uhd_graphics_630.0”
step3 模型编译
model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
step4 进行一次预测
print("Running initial batch (compiling tile program)")
y = model.predict(x=x_train, batch_size=batch_size)
Running initial batch (compiling tile program)
由于输出较快,内容打印只有一行。
step5 进行10次预测
# Now start the clock and run 10 batchesprint("Timing inference...")
start = time.time()
for i in range(10):y = model.predict(x=x_train, batch_size=batch_size)print("Ran in {} seconds".format(time.time() - start))
Ran in 4.241918087005615 seconds
Ran in 8.452141046524048 seconds
Ran in 12.665411949157715 seconds
Ran in 16.849968910217285 seconds
Ran in 21.025720834732056 seconds
Ran in 25.212764024734497 seconds
Ran in 29.405478954315186 seconds
Ran in 33.594977140426636 seconds
Ran in 37.7886438369751 seconds
Ran in 41.98136305809021 seconds
采用显卡metal_amd_radeon_pro_5300m.0
在plaidml-setup设置的选择显卡的阶段,不再选择显卡metal_intel®_uhd_graphics_630.0,而是选择metal_amd_radeon_pro_5300m.0
(venv) tsingj@tsingjdeMacBook-Pro-2 ~ # plaidml-setupPlaidML Setup (0.6.4)Thanks for using PlaidML!Some Notes:* Bugs and other issues: https://github.com/plaidml/plaidml* Questions: https://stackoverflow.com/questions/tagged/plaidml* Say hello: https://groups.google.com/forum/#!forum/plaidml-dev* PlaidML is licensed under the Apache License 2.0Default Config Devices:metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)Experimental Config Devices:llvm_cpu.0 : CPU (LLVM)metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)opencl_amd_radeon_pro_5300m_compute_engine.0 : AMD AMD Radeon Pro 5300M Compute Engine (OpenCL)opencl_cpu.0 : Intel CPU (OpenCL)opencl_intel_uhd_graphics_630.0 : Intel Inc. Intel(R) UHD Graphics 630 (OpenCL)metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)Using experimental devices can cause poor performance, crashes, and other nastiness.Enable experimental device support? (y,n)[n]:nMultiple devices detected (You can override by setting PLAIDML_DEVICE_IDS).
Please choose a default device:1 : metal_intel(r)_uhd_graphics_630.02 : metal_amd_radeon_pro_5300m.0Default device? (1,2)[1]:2Selected device:metal_amd_radeon_pro_5300m.0Almost done. Multiplying some matrices...
Tile code:function (B[X,Z], C[Z,Y]) -> (A) { A[x,y : X,Y] = +(B[x,z] * C[z,y]); }
Whew. That worked.Save settings to /Users/tsingj/.plaidml? (y,n)[y]:y
Success!
step0 通过plaidml导入keras,之后再做keras相关操作
# Importing PlaidML. Make sure you follow this order
import plaidml.keras
plaidml.keras.install_backend()
import os
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
注:
1、在采用plaidml=0.7.0 版本时,plaidml.keras.install_backend()操作会发生报错
2、这步操作,会通过plaidml导入keras,将后台运算引擎设置为plaidml,而不再采用tenserflow
step1 先导入keras包,导入数据cifar10
#!/usr/bin/env python
import numpy as np
import os
import time
import keras
import keras.applications as kapp
from keras.datasets import cifar10
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
batch_size = 8
x_train = x_train[:batch_size]
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)
step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
model = kapp.VGG19()
INFO:plaidml:Opening device “metal_amd_radeon_pro_5300m.0”
注意,这里首次执行输入了显卡信息。
step3 模型编译
model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
step4 进行一次预测
print("Running initial batch (compiling tile program)")
y = model.predict(x=x_train, batch_size=batch_size)
Running initial batch (compiling tile program)
由于输出较快,内容打印只有一行。
step5 进行10次预测
# Now start the clock and run 10 batchesprint("Timing inference...")
start = time.time()
for i in range(10):y = model.predict(x=x_train, batch_size=batch_size)print("Ran in {} seconds".format(time.time() - start))
查看输出
Ran in 0.43606019020080566 seconds
Ran in 0.8583459854125977 seconds
Ran in 1.2787911891937256 seconds
Ran in 1.70143723487854 seconds
Ran in 2.1235032081604004 seconds
Ran in 2.5464580059051514 seconds
Ran in 2.9677979946136475 seconds
Ran in 3.390064001083374 seconds
Ran in 3.8117799758911133 seconds
Ran in 4.236911058425903 seconds
四、评估讨论
显卡metal_intel®_uhd_graphics_630.0的内存值为1536 MB,虽然作为显卡,其在进行运算中性能不及本机的 6核CPU;
显卡metal_amd_radeon_pro_5300m.0,内存值为4G,其性能与本机 CPU对比,提升将近 1 倍数。
由此可以看到对于采用 GPU在进行机器学习运算中的强大优势。
相关文章:

【AIGC】二、mac本地采用GPU启动keras运算
mac本地采用GPU启动keras运算 一、问题背景二、技术背景三、实验验证本机配置安装PlaidML安装plaidml-keras配置默认显卡 运行采用 CPU运算的代码step1 先导入keras包,导入数据cifar10,这里可能涉及外网下载,有问题可以参考[keras使用基础问题…...
【Qt】使用临时对象的坑
前言 使用临时对象时,一定要注意临时对象析构后是否会对代码造成影响,下面是一些可能出现的错误 std::string Widget::getStr() {return "nihao"; }void Widget::on_pushButton_clicked() {std::string objStr getStr();const char* str g…...

Apache-Flink未授权访问高危漏洞修复
漏洞等级 高危漏洞!!! 一、漏洞描述 攻击者没有获取到登录权限或未授权的情况下,或者不需要输入密码,即可通过直接输入网站控制台主页面地址,或者不允许查看的链接便可进行访问,同时进行操作。 二、修复建议 根据业务/系统具体情况,结合如下建议做出具体选择: 配…...

Unable to obtain driver using Selenium Manager: Selenium Manager failed解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

(01)Unity使用在线AI大模型(使用百度千帆服务)
目录 一、概要 二、环境说明 三、申请百度千帆Key 四、使用千帆大模型 四、给大模型套壳 一、概要 在Unity中使用在线大模型分为两篇发布,此篇文档为在Python中使用千帆大模型,整体实现逻辑是:在Python中接入大模型—>发布为可传参的…...

Zed 编辑器发布了原生 Linux 版本
由 Rust 编写、GPU 加速的 Zed 文本编辑器终于提供了正式的 Linux 原生版本!在过去的几个月里,Zed 的 Linux 支持取得了长足的进步,现在已经进入了更正式的阶段。 今天,这款由前 Atom 开发人员创建的现代开源代码编辑器现在在 Li…...

安全入门day01
一、常用名词 1、前后端 (1)前端 前端主要负责用户界面的展示和交互。它通常包括HTML、CSS和JavaScript等技术的使用,也可能使用各种前端框架和库,如React、Vue.js、Angular等,来构建更加复杂和动态的用户界面。前端…...

基于Adaboost的数据分类算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于Adaboost的数据分类算法matlab仿真,分别对比线性分类和非线性分类两种方式。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 (完整程序…...

基于Java的斗地主游戏案例开发(做牌、洗牌、发牌、看牌
package Game;import java.util.ArrayList; import java.util.Collections;public class PokerGame01 {//牌盒//♥3 ♣3static ArrayList<String> list new ArrayList<>();//静态代码块//特点:随着类的加载而在加载的,而且只执行一次。stat…...

Ubuntu 22.04.4 LTS (linux) 安装certbot 免费ssl证书申请 letsencrypt
1 安装certbot sudo apt update sudo apt-get install certbot 2 申请letsencrypt证书 sudo certbot certonly --webroot -w 网站目录 -d daloradius.域名.com 3 修改nginx 配置ssl 证书 # 配置服务器证书 ssl_certificate /etc/letsencrypt/live/daloradius.域名.com/f…...

MT6825磁编码IC在智能双旋机器人中的应用
MT6825磁编码IC在智能双旋机器人中的应用,无疑为这一领域的创新和发展注入了新的活力。作为一款高性能的磁性位置传感器,MT6825以其独特的优势,在智能双旋机器人的运动控制、定位精度以及系统稳定性等方面发挥了关键作用。 www.abitions.com …...

Datawhale 2024 年 AI 夏令营第二期——基于术语词典干预的机器翻译挑战赛
#AI夏令营 #Datawhale #夏令营 1.赛事简介 目前神经机器翻译技术已经取得了很大的突破,但在特定领域或行业中,由于机器翻译难以保证术语的一致性,导致翻译效果还不够理想。对于术语名词、人名地名等机器翻译不准确的结果,可以通…...

Qt 多窗体、复用窗口的使用
1.继承自QWidge的窗口的呈现,作为tabPage呈现,作为独立窗口呈现 2.继承自QMainWindow的窗口的呈现,作为abPage呈现,作为独立窗口呈现 1. 继承自QWidge的窗口的呈现 1.1 作为tabPage呈现 void MutiWindowExample::on_actWidgetI…...
python 基础语法整理
注释声明命名规范数据类型简单数据类型复合数据类型 打印输出类型转换随机数获取布尔类型流程控制语句循环语句字符串操作拼接替换分割与连接大小写转换空白字符删除 切片列表操作访问/赋值判断是否存在元素添加/删除复制排序 元组集合字典空集合与空字典 函数声明多返回值函数…...

【Linux】常见指令(下)
【Linux】常见指令(下) 通配符 *man指令cp指令echo指令cat指令(简单介绍)cp指令 mv指令alias指令which ctrl ccat指令linux下一切皆文件 more指令less指令head指令tail指令管道 通配符 ‘*’ 通配符’ *‘,是可以匹配…...

jvm常用密令、jvm性能优化、jvm性能检测、Java jstat密令使用、Java自带工具、Java jmap使用
1.jps是Java虚拟机的进程状态工具,用于列出正在运行的Java进程 jps命令的使用:cmd打开直接jps 1.1不带参数: jps 默认情况下,列出所有正在运行的 Java 进程的进程 ID 和主类名。 1.2 -l:显示完整的主类名或 JAR 文件…...

实验三:图像的平滑滤波
目录 一、实验目的 二、实验原理 1. 空域平滑滤波 2. 椒盐噪声的处理 三、实验内容 四、源程序和结果 (1) 主程序(matlab) (2) 函数GrayscaleFilter (3) 函数MeanKernel (4) 函数MedFilter 五、结果分析 1. 空域平滑滤波 2. 椒盐噪声的处理…...

VUE前端HTML静默打印(不弹出打印对话框)PDF简单方案
前言 在做打印功能的时候,以前大部分客户端都是用C#做的,静默打印(也就是不弹出打印对话框)比较简单。 但是使用浏览器作为客户端,静默打印(也就是不弹出打印对话框)做起来就比较困难。困难的…...

大数据hive表和iceberg表格式
iceberg: https://iceberg.apache.org/ iceberg表,是一种面向大型分析数据集的开放表格式,旨在提供可扩展、高效、安全的数据存储和查询解决方案。它支持多种存储后端上的数据操作,并提供 ACID 事务、多版本控制和模式演化等特性,…...

flutter 手写 TabBar
前言: 这几天在使用 flutter TabBar 的时候 我们的设计给我提了一个需求: 如下 Tabbar 第一个元素 左对齐,试了下TabBar 的配置,无法实现这个需求,他的 配置是针对所有元素的。而且 这个 TabBar 下面的 滑块在移动的时…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...