当前位置: 首页 > news >正文

【Python实战因果推断】37_双重差分8

目录

Diff-in-Diff with Covariates


Diff-in-Diff with Covariates

您需要学习的 DID 的另一个变量是如何在模型中包含干预前协变量。这在您怀疑平行趋势不成立,但条件平行趋势成立的情况下非常有用:

E\Big[Y(0)_{it = 1}-Y(0)_{it = 0}\Big|D=1,X\Big]=E\Big[Y(0)_{it = 1}-Y(0)_{it = 0}\Big|D=0,X\Big]

考虑这种情况:您拥有与之前相同的营销数据,但现在您拥有全国多个地区的数据。如果你绘制出每个地区的干预结果和对照结果,你会发现一些有趣的现象:

 mkt_data_all = (pd.read_csv("./data/short_offline_mkt_all_regions.csv").astype({"date":"datetime64[ns]"}))

干预前的趋势在一个地区内似乎是平行的,但在不同地区之间却不是。因此,如果在这里简单地运行 DID 的双向固定效应规范,就会得到有偏差的 ATT 估计值:

 print("True ATT: ", mkt_data_all.query("treated*post==1")["tau"].mean())m = smf.ols('downloads ~ treated:post + C(city) + C(date)',data=mkt_data_all).fit()print("Estimated ATT:", m.params["treated:post"])True ATT: 1.7208921056102682Estimated ATT: 2.068391984256296

您需要以某种方式考虑每个地区的不同趋势。您可能会认为,只需在回归中加入地区作为额外的协变量就能解决问题。但请再想一想!还记得使用单位固定效应如何消除任何时间固定协变量的影响吗?这不仅适用于不可观测的混杂因素,也适用于跨时间恒定的地区协变量。最终的结果是,天真地将其加入回归是无害的。您将得到与之前相同的结果: 

 m = smf.ols('downloads ~ treated:post + C(city) + C(date) + C(region)',data=mkt_data_all).fit()m.params["treated:post"]2.071153674125536

要想在 DID 模型中正确包含干预前协变量,您需要回顾一下 DID 的工作原理,即估算两个重要部分:干预基线和控制趋势。然后将控制趋势投射到治疗基线中。这意味着您必须分别估计每个地区的控制趋势。矫枉过正的做法是对每个地区分别进行差分回归。您可以在各个地区之间循环,或者将整个 DID 模型与地区虚拟变量进行交互:

 m_saturated = smf.ols('downloads ~ (post*treated)*C(region)',data=mkt_data_all).fit()
atts = m_saturated.params[m_saturated.params.index.str.contains("post:treated")]attspost:treated 1.676808
post:treated:C(region)[T.N] -0.343667
post:treated:C(region)[T.S] -0.985072
post:treated:C(region)[T.W] 1.369363
dtype: float64

请记住,ATT 估计值应根据基线组来解释,在本例中,基线组为东部地区。因此,对北部地区的影响为 1.67-0.34,对南部地区的影响为 1.67-0.98,以此类推。接下来,您可以使用加权平均法对不同的 ATT 进行汇总,其中一个地区的城市数量就是权重:

 reg_size = (mkt_data_all.groupby("region").size()/len(mkt_data_all["date"].unique()))base = atts[0]np.array([reg_size[0]*base]+[(att+base)*sizefor att, size in zip(atts[1:], reg_size[1:])]).sum()/sum(reg_size)1.6940400451471818

尽管我说这是矫枉过正,但这其实是个不错的主意。它很容易实现,也很难出错。不过,它也有一些问题。例如,如果你有很多协变量或连续协变量,这种方法就不切实际了。因此,我认为您应该知道还有另一种方法。与其将区域与治疗后和治疗后虚拟变量交互,您可以只与治疗后虚拟变量交互。这个模型将分别估计每个地区受治疗者的趋势(治疗前和治疗后的结果水平),但它将拟合一个截距移动到受治疗者和治疗后时期:

  m = smf.ols('downloads ~ post*(treated + C(region))',data=mkt_data_all).fit()m.summary().tables[1]

与 post:treated 相关的参数可以解释为 ATT。它与您之前得到的 ATT 并不完全相同,但非常接近。出现这种差异的原因是--您现在应该知道--回归按方差对各地区的 ATT 进行了平均,而之前是按地区大小进行平均的。这意味着回归会使干预分布更均匀(方差更大)的地区占更大比重。

第二种方法运行速度更快,但缺点是需要仔细考虑如何进行交互。因此,我建议您只有在真正了解自己在做什么的情况下才使用这种方法。或者,在使用之前,先尝试建立一些模拟数据,在这些数据中,您知道真实的 ATT,然后看看能否用您的模型恢复它。请记住:为每个地区运行一个 DID 模型并求取平均结果并不丢人。事实上,这是一个特别聪明的想法。

相关文章:

【Python实战因果推断】37_双重差分8

目录 Diff-in-Diff with Covariates Diff-in-Diff with Covariates 您需要学习的 DID 的另一个变量是如何在模型中包含干预前协变量。这在您怀疑平行趋势不成立,但条件平行趋势成立的情况下非常有用: 考虑这种情况:您拥有与之前相同的营销数…...

【python学习】第三方库之matplotlib的定义、功能、使用场景和代码示例(线图、直方图、散点图)

引言 Matplotlib 是一个 Python 的 2D 绘图库,它可以在各种平台上以各种硬拷贝格式和交互环境生成具有出版品质的图形。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图、直方图、功率谱、条形图、错误图、散点图等 Matplotlib 是 …...

MySQL(3)表的操作

目录 1. 表的操作; 2. 数据类型; 1. 表的操作: 1.1 创建表: 语法: create table 表名( 属性 类型 [comment ], 属性 类型 [comment ], 属性 类型 ) character set 字符集 collate 校验集 engine 存储引擎; 前面博客提到: MyISAM和InoDB这两个比较重要. 1.2 查看表…...

SQL GROUPING运算符详解

在大数据开发中,我们经常需要对数据进行分组和汇总分析。 目录 1. GROUPING运算符概念2. 语法和用法3. 实际应用示例4. GROUPING运算符的优势5. 高级应用场景5.1 与CASE语句结合使用5.2 多维数据分析 6. 性能考虑和优化技巧7. GROUPING运算符的局限性8. 最佳实践9. GROUPING与其…...

在VS2017下FFmpeg+SDL编写最简单的视频播放器

1.下载ShiftMediaProject/FFmpeg 2.下载SDL2 3.新建VC控制台应用 3.配置include和lib 4.把FFmpeg和SDL的dll 复制到工程Debug目录下,并设置调试命令 5.复制一下mp4视频到工程Debug目录下(复制一份到*.vcxproj同一目录,用于调试) 6…...

LogViewer v2.x更新

logvewer 介绍 logviewer 是一个可以方便开发人员通过浏览器查看和下载远程服务器集群日志,使用ssh方式管理远程tomcat、jar包等应用,节省服务器资源。大家可以下载体验,请勿用于生产环境。欢迎提出意见或建议。 解决的问题 一般情况下公司…...

detection_segmentation

目标检测和实例分割(OBJECT_DETECTION AND INSTANCE SEGMENTATION) 文章目录 目标检测和实例分割(OBJECT_DETECTION AND INSTANCE SEGMENTATION)一. 计算机视觉(AI VISION)1. 图像分类2. 目标检测与定位3. 语义分割和实例分割目标检测算法可以分为两大类: R-CNN生成…...

0基础学python-13:古希腊掌管时间的模块——datetime和time

目录 前言 datetime模块 一、datetime 类 1.创建 datetime 对象 2.获取日期时间的各个部分 3.格式化日期时间为字符串 4.解析字符串为 datetime 对象 二、timedelta 类 1.创建 timedelta 对象 datetime注意事项 time模块 1.获取当前时间戳 2.获取当前时间的结构化表…...

棒球特长生升学具有其独特的优势和劣势·棒球6号位

棒球特长生升学具有其独特的优势和劣势,以下是对这两方面的详细分析: 获得更好的教育资源: 棒球特长生有机会通过棒球特长招生计划进入更好的学校。这些学校往往拥有更优质的教育资源,包括师资力量、教学设施、课程设置等&#…...

搜维尔科技:Xsens DOT 可穿戴传感器介绍及示例应用演示

Xsens DOT可穿戴传感器介绍及示例应用演示 搜维尔科技:Xsens DOT 可穿戴传感器介绍及示例应用演示...

数据分析案例-2024 年热门动漫数据集可视化分析

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

C#小结:未能找到类型或命名空间名“xxx”(是否缺少 using 指令或程序集引用?)

方案一:移除类库这些失效的引用,下载对应版本的dll(如有则不需要重复下载),重新添加引用 方案二:类库右键属性-调整目标框架版本(一般是降低版本) 方案三:调整类库编译顺…...

STM32智能无人机控制系统教程

目录 引言环境准备智能无人机控制系统基础代码实现:实现智能无人机控制系统 4.1 数据采集模块 4.2 数据处理与控制算法 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:无人机管理与优化问题解决方案与优化收尾与总结 1. 引言 智能无人机控…...

从 QWebEnginePage 打印文档

QWebEnginePage 是 Qt WebEngine 模块中的一个类,它提供了用于处理网页内容的接口。如果你想要打印 QWebEnginePage 中的内容,你可以使用 QPrinter 和 QPrintDialog 类来实现。 项目配置了 Qt WebEngine 模块,并且在你的.pro文件中包含了相应…...

初识Docker及管理Docker

Docker部署 初识DockerDocker是什么Docker的核心概念镜像容器仓库 容器优点容器在内核中支持2种重要技术:Docker容器与虚拟机的区别 安装Docker源码安装yum安装检查Docker Docker 镜像操作配置镜像加速器(阿里系)搜索镜像获取镜像查看镜像信息…...

【学术会议征稿】2024年第三届信息学,网络与计算技术国际学术会议(ICINC2024)

2024年第三届信息学,网络与计算技术国际学术会议(ICINC2024) 2024 3rd International Conference on Informatics,Networking and Computing (ICINC 2024) 2024年第三届信息学,网络与计算技术国际学术会议(ICINC2024)将于2024年10月25-27日于中国郑州召…...

在golang中Sprintf和Printf 的区别

最近一直在学习golang这个编程语言,我们这里做一个笔记就是 Sprintf和Printf 的区别 fmt.Sprintf 根据格式化参数生成格式化的字符串并返回该字符串。 fmt.Printf 根据格式化参数生成格式化的字符串并写入标准输出。由上面就可以知道,fmt.Sprintf返回的…...

策略模式原理与C++实现

定义 定义一些列算法,把他们一个个封装起来,并且使他们可以相互替换(变化)。该模式使得算法可独立于使用它的客户程序(稳定)而变化(扩展、子类化)。 C实现 在不考虑策略模式的情况…...

打包一个自己的Vivado IP核

写在前面 模块复用是逻辑设计人员必须掌握的一个基本功,通过将成熟模块打包成IP核,可实现重复利用,避免重复造轮子,大幅提高我们的开发效率。 接下来将之前设计的串口接收模块和串口发送模块打包成IP核,再分别调用…...

《昇思25天学习打卡营第05天|qingyun201003》

日期 心得 通过本节课的学习,学习到了通过网络获取数据集,处理数据集模型。数据模型层数据变换,模型参数解析和其对应代码中的API进行解析。 昇思MindSpore 基础入门学习 网络构建 (AI 代码解析) 网络构建 神经网络模型是由神经网络层和T…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

网站指纹识别

网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四&#xff…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...

Vue ③-生命周期 || 脚手架

生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...