STM32智能仓库管理系统教程
目录
- 引言
- 环境准备
- 智能仓库管理系统基础
- 代码实现:实现智能仓库管理系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
- 应用场景:仓库管理与优化
- 问题解决方案与优化
- 收尾与总结
1. 引言
智能仓库管理系统通过STM32嵌入式系统结合各种传感器、执行器和通信模块,实现对仓库数据的实时监控、自动处理和数据传输。本文将详细介绍如何在STM32系统中实现一个智能仓库管理系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。
2. 环境准备
硬件准备
- 开发板:STM32F4系列或STM32H7系列开发板
- 调试器:ST-LINK V2或板载调试器
- 传感器:如温湿度传感器、光照传感器、红外传感器、RFID读写器等
- 执行器:如继电器模块、电动机
- 通信模块:如Wi-Fi模块、LoRa模块
- 显示屏:如OLED显示屏
- 按键或旋钮:用于用户输入和设置
- 电源:电源适配器
软件准备
- 集成开发环境(IDE):STM32CubeIDE或Keil MDK
- 调试工具:STM32 ST-LINK Utility或GDB
- 库和中间件:STM32 HAL库和FreeRTOS
安装步骤
- 下载并安装STM32CubeMX
- 下载并安装STM32CubeIDE
- 配置STM32CubeMX项目并生成STM32CubeIDE项目
- 安装必要的库和驱动程序
3. 智能仓库管理系统基础
控制系统架构
智能仓库管理系统由以下部分组成:
- 数据采集模块:用于采集仓库温湿度、光照、物品进出等数据
- 数据处理与控制模块:对采集的数据进行处理和分析,生成控制信号
- 通信与网络系统:实现仓库数据与服务器或其他设备的通信
- 显示系统:用于显示仓库状态和数据
- 用户输入系统:通过按键或旋钮进行设置和调整
功能描述
通过各种传感器采集仓库数据,并实时显示在OLED显示屏上。系统通过数据处理和网络通信,实现对仓库数据的监测和管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。
4. 代码实现:实现智能仓库管理系统
4.1 数据采集模块
配置温湿度传感器
使用STM32CubeMX配置I2C接口:
- 打开STM32CubeMX,选择您的STM32开发板型号。
- 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
- 生成代码并导入到STM32CubeIDE中。
代码实现:
#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "dht22.h"I2C_HandleTypeDef hi2c1;void I2C1_Init(void) {hi2c1.Instance = I2C1;hi2c1.Init.ClockSpeed = 100000;hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;hi2c1.Init.OwnAddress1 = 0;hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;hi2c1.Init.OwnAddress2 = 0;hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;HAL_I2C_Init(&hi2c1);
}void Read_Temperature_Humidity(float* temperature, float* humidity) {DHT22_ReadAll(temperature, humidity);
}int main(void) {HAL_Init();SystemClock_Config();I2C1_Init();DHT22_Init();float temperature, humidity;while (1) {Read_Temperature_Humidity(&temperature, &humidity);HAL_Delay(1000);}
}
配置光照传感器
使用STM32CubeMX配置ADC接口:
- 打开STM32CubeMX,选择您的STM32开发板型号。
- 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
- 生成代码并导入到STM32CubeIDE中。
代码实现:
#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc1;void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc1.Instance = ADC1;hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc1.Init.Resolution = ADC_RESOLUTION_12B;hadc1.Init.ScanConvMode = DISABLE;hadc1.Init.ContinuousConvMode = ENABLE;hadc1.Init.DiscontinuousConvMode = DISABLE;hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc1.Init.NbrOfConversion = 1;hadc1.Init.DMAContinuousRequests = DISABLE;hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc1);sConfig.Channel = ADC_CHANNEL_0;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}uint32_t Read_Light_Intensity(void) {HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);return HAL_ADC_GetValue(&hadc1);
}int main(void) {HAL_Init();SystemClock_Config();ADC_Init();uint32_t light_intensity;while (1) {light_intensity = Read_Light_Intensity();HAL_Delay(1000);}
}
配置红外传感器
使用STM32CubeMX配置GPIO接口:
- 打打开STM32CubeMX,选择您的STM32开发板型号。
- 在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
- 生成代码并导入到STM32CubeIDE中。
代码实现:
#include "stm32f4xx_hal.h"#define IR_SENSOR_PIN GPIO_PIN_0
#define GPIO_PORT GPIOAvoid GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = IR_SENSOR_PIN;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}uint8_t Read_IR_Sensor(void) {return HAL_GPIO_ReadPin(GPIO_PORT, IR_SENSOR_PIN);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();uint8_t ir_status;while (1) {ir_status = Read_IR_Sensor();HAL_Delay(1000);}
}
配置RFID读写器
使用STM32CubeMX配置UART接口:
- 打打开STM32CubeMX,选择您的STM32开发板型号。
- 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
- 生成代码并导入到STM32CubeIDE中。
代码实现:
#include "stm32f4xx_hal.h"
#include "usart.h"
#include "rfid_reader.h"UART_HandleTypeDef huart1;void UART1_Init(void) {huart1.Instance = USART1;huart1.Init.BaudRate = 9600;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;HAL_UART_Init(&huart1);
}uint32_t Read```c
uint32_t Read_RFID(void) {return RFID_Read();
}int main(void) {HAL_Init();SystemClock_Config();UART1_Init();RFID_Init();uint32_t rfid_data;while (1) {rfid_data = Read_RFID();HAL_Delay(1000);}
}
4.2 数据处理与控制模块
数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。
仓库数据处理与控制算法
实现一个简单的仓库数据处理与控制算法,根据传感器数据生成控制信号:
#define TEMP_THRESHOLD 30.0
#define HUMIDITY_THRESHOLD 80.0
#define LIGHT_THRESHOLD 1000
#define IR_SENSOR_DETECTED 1void Process_Warehouse_Data(float temperature, float humidity, uint32_t light_intensity, uint8_t ir_status, uint32_t rfid_data) {if (temperature > TEMP_THRESHOLD || humidity > HUMIDITY_THRESHOLD || light_intensity > LIGHT_THRESHOLD || ir_status == IR_SENSOR_DETECTED) {// 打开报警器HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET); } else {// 关闭报警器HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET); }// 根据RFID数据进行相应处理if (rfid_data != 0) {// 处理RFID数据}
}void GPIOB_Init(void) {__HAL_RCC_GPIOB_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = GPIO_PIN_0;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}int main(void) {HAL_Init();SystemClock_Config();GPIOB_Init();I2C1_Init();ADC_Init();UART1_Init();DHT22_Init();RFID_Init();float temperature, humidity;uint32_t light_intensity, rfid_data;uint8_t ir_status;while (1) {Read_Temperature_Humidity(&temperature, &humidity);light_intensity = Read_Light_Intensity();ir_status = Read_IR_Sensor();rfid_data = Read_RFID();Process_Warehouse_Data(temperature, humidity, light_intensity, ir_status, rfid_data);HAL_Delay(1000);}
}
4.3 通信与网络系统实现
配置Wi-Fi模块
使用STM32CubeMX配置UART接口:
- 打打开STM32CubeMX,选择您的STM32开发板型号。
- 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
- 生成代码并导入到STM32CubeIDE中。
代码实现:
#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"UART_HandleTypeDef huart2;void UART2_Init(void) {huart2.Instance = USART2;huart2.Init.BaudRate = 115200;huart2.Init.WordLength = UART_WORDLENGTH_8B;huart2.Init.StopBits = UART_STOPBITS_1;huart2.Init.Parity = UART_PARITY_NONE;huart2.Init.Mode = UART_MODE_TX_RX;huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart2.Init.OverSampling = UART_OVERSAMPLING_16;HAL_UART_Init(&huart2);
}void Send_Warehouse_Data_To_Server(float temperature, float humidity, uint32_t light_intensity, uint8_t ir_status) {char buffer[128];sprintf(buffer, "Temp: %.2f, Humidity: %.2f, Light: %lu, IR: %u",temperature, humidity, light_intensity, ir_status);HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}int main(void) {HAL_Init();SystemClock_Config();UART2_Init();GPIOB_Init();I2C1_Init();ADC_Init();UART1_Init();DHT22_Init();RFID_Init();float temperature, humidity;uint32_t light_intensity;uint8_t ir_status;while (1) {Read_Temperature_Humidity(&temperature, &humidity);light_intensity = Read_Light_Intensity();ir_status = Read_IR_Sensor();Send_Warehouse_Data_To_Server(temperature, humidity, light_intensity, ir_status);HAL_Delay(1000);}
}
4.4 用户界面与数据可视化
配置OLED显示屏
使用STM32CubeMX配置I2C接口:
- 打打开STM32CubeMX,选择您的STM32开发板型号。
- 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
- 生成代码并导入到STM32CubeIDE中。
代码实现:
首先,初始化OLED显示屏:
#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"void Display_Init(void) {OLED_Init();
}
然后实现数据展示函数,将仓库数据展示在OLED屏幕上:
void Display_Data(float temperature, float humidity, uint32_t light_intensity, uint8_t ir_status) {char buffer[32];sprintf(buffer, "Temp: %.2f C", temperature);OLED_ShowString(0, 0, buffer);sprintf(buffer, "Humidity: %.2f %%", humidity);OLED_ShowString(0, 1, buffer);sprintf(buffer, "Light: %lu", light_intensity);OLED_ShowString(0, 2, buffer);sprintf(buffer, "IR: %u", ir_status);OLED_ShowString(0, 3, buffer);
}int main(void) {HAL_Init();SystemClock_Config();I2C1_Init();Display_Init();GPIOB_Init();I2C1_Init();ADC_Init();UART1_Init();DHT22_Init();RFID_Init();float temperature, humidity;uint32_t light_intensity;uint8_t ir_status;while (1) {Read_Temperature_Humidity(&temperature, &humidity);light_intensity = Read_Light_Intensity();ir_status = Read_IR_Sensor();// 显示仓库数据Display_Data(temperature, humidity, light_intensity, ir_status);HAL_Delay(1000);}
}
5. 应用场景:仓库管理与优化
仓库环境监测
智能仓库管理系统可以用于仓库环境监测,通过实时监测温湿度、光照等参数,优化仓库环境,保障物品安全。
库存管理
智能仓库管理系统可以实现对物品进出的实时监测和记录,提供科学的库存管理方法,提高仓库管理效率。
安全监控
智能仓库管理系统可以通过红外传感器、RFID读写器等设备实现仓库的安全监控,及时发现和处理安全隐患。
能耗管理
智能仓库管理系统可以通过控制照明、空调等设备,实现仓库能耗的优化管理,降低能耗成本。
⬇帮大家整理了单片机的资料
包括stm32的项目合集【源码+开发文档】
点击下方蓝字即可领取,感谢支持!⬇
点击领取更多嵌入式详细资料
问题讨论,stm32的资料领取可以私信!
6. 问题解决方案与优化
常见问题及解决方案
传感器数据不准确
确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。
仓库数据处理不稳定
优化处理算法和硬件配置,减少数据处理的不稳定性,提高系统反应速度。
解决方案:优化处理算法,调整参数,减少振荡和超调。使用高精度传感器,提高数据采集的精度和稳定性。选择更高效的处理器,提高数据处理的响应速度。
数据传输失败
确保Wi-Fi模块与STM32的连接稳定,优化通信协议,提高数据传输的可靠性。
解决方案:检查Wi-Fi模块与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。优化通信协议,减少数据传输的延迟和丢包率。选择更稳定的通信模块,提升数据传输的可靠性。
显示屏显示异常
检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。
解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。
优化建议
数据集成与分析
集成更多类型的传感器数据,使用数据分析技术进行仓库状态的预测和优化。
建议:增加更多监测传感器,如CO2传感器、风速传感器等。使用云端平台进行数据分析和存储,提供更全面的仓库环境监测和管理服务。
用户交互优化
改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时仓库环境参数图表、历史记录等。
智能化控制提升
增加智能决策支持系统,根据历史数据和实时数据自动调整仓库管理策略,实现更高效的仓库管理和控制。
建议:使用数据分析技术分析仓库数据,提供个性化的管理建议。结合历史数据,预测可能的问题和需求,提前优化控制策略。
7. 收尾与总结
本教程详细介绍了如何在STM32嵌入式系统中实现智能仓库管理系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能仓库管理系统。
相关文章:

STM32智能仓库管理系统教程
目录 引言环境准备智能仓库管理系统基础代码实现:实现智能仓库管理系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:仓库管理与优化问题解决方案与优化收尾与总结 1. 引言 智能仓库管理系统通…...

空间计算开发:Volu的集成开发工具包
在空间计算技术迅速发展的今天,VR和AR项目的开发需求日益增长。Volu,一个面向空间计算赛道的开发者工具,正致力于简化这一过程。本文将深入探讨Volu如何通过其集成环境,为开发者提供一站式的解决方案。 一、定位:空间计算的得力助手 Volu定位为一个专为空间开发设计的集…...

02-Redis未授权访问漏洞
免责声明 本文仅限于学习讨论与技术知识的分享,不得违反当地国家的法律法规。对于传播、利用文章中提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,本文作者不为此承担任何责任,一旦造成后果请自行承担&…...

Linux——多路复用之poll
目录 前言 一、poll的认识 二、poll的接口 三、poll的使用 前言 前面我们学习了多路复用的select,知道多路复用的原理与select的使用方法,但是select也有许多缺点,导致他的效率不算高。今天我们来学习poll的使用,看看poll较于…...

【AI资讯】7.19日凌晨OpenAI发布迷你AI模型GPT-4o mini
性价比最高的小模型 北京时间7月19日凌晨,美国OpenAI公司推出一款新的 AI 模型“GPT-4o mini”,即GPT-4o的更小参数量、简化版本。OpenAI表示,GPT-4o mini是目前功能最强大、性价比最高的小参数模型,性能逼近原版GPT-4࿰…...
3.设计模式--创建者模式--工厂模式
3.设计模式–创建者模式–工厂模式 3.1简单工厂和静态 工厂(不属于23中设计模式) //抽象类:定义了产品的规范,描述了产品的主要特性和功能 public interface Tea {public abstract void setName();public abstract String getNa…...
IOT 的 10 种常见协议、组网模式、特点及其使用场景浅析
前情: 开放系统互连(OSI)模型,它列出了七层。从下到上,各层如下: 物理层 数据链接 网络层 传输层 会话层 推介会 应用层 物联网也以多层模型的形式表达。尽管有些使用 OSI 七层模型,但其…...

【Android】 dp与sp,加冕为王
目录 重要概念 屏幕尺寸 屏幕分辨率 屏幕像素密度 基础知识: ppi pt DPI 的定义和重要性 Android 中的 DPI 级别 px dp(Density Independent Pixels) sp(Scale-independent Pixels) 安卓的dp/dip、sp 虚拟…...

R语言画散点图-饼图-折线图-柱状图-箱线图-直方图-曲线图-热力图-雷达图
R语言画散点图-饼图-折线图-柱状图-箱线图-直方图-曲线图-热力图-雷达图 散点图示例解析效果 饼图示例解析效果 折线图示例解析效果 柱状图示例解析效果 箱线图示例解析效果 直方图示例解析效果 曲线图使用 curve() 函数示例效果 使用 plot() 函数示例效果 使用 ggplot2 包绘制…...

影响转化率的多元因素分析及定制开发AI智能名片S2B2C商城系统小程序的应用案例
摘要:在互联网时代,转化率是衡量营销活动成功与否的关键指标。本文首先分析了影响转化率的多种因素,包括活动页面的设计、活动的限时性、主题文案的吸引力、从众心理的运用,以及最核心的产品质量与优惠力度。接着,本文…...
数据仓库中事实表设计的关键步骤解析
在数据仓库的设计过程中,事实表是描述业务度量的核心组件。本文将深入探讨数据仓库中事实表设计的关键步骤,包括选择业务过程及确定事实表类型、声明粒度、确定维度和确定事实的过程,帮助读者更好地理解和应用事实表设计的原则和方法。 第一…...

.net6 core Worker Service项目,使用Exchange Web Services (EWS) 分页获取电子邮件收件箱列表,邮件信息字段
Program.cs 安装包:Microsoft.AspNetCore.Hosting.WindowsServices、Microsoft.Extensions.Hosting、Microsoft.Extensions.Hosting.WindowsServices、Microsoft.Extensions.Logging.Log4Net.AspNetCore 新建Configs/log4net.config using Com.Chinahorn.Exchange.W…...

通过 EMR Serverless Spark 提交 PySpark 流任务
在大数据快速发展的时代,流式处理技术对于实时数据分析至关重要。EMR Serverless Spark提供了一个强大而可扩展的平台,它不仅简化了实时数据处理流程,还免去了服务器管理的烦恼,提升了效率。本文将指导您使用EMR Serverless Spark…...
【Linux网络】epoll实现的echo服务器{nocopy类/智能指针/echo服务器}
文章目录 1.代码基础1.1某类唯一存在1.2C智能指针 2.epoll实现的echo服务器日志套接字CMakeepoll封装主函数服务器 1.代码基础 1.1某类唯一存在 这段代码定义了一个名为 nocopy 的类,它旨在防止该类的实例被复制或赋值。这是通过在类中显式删除拷贝构造函数&#…...

[数据集][目标检测]拐杖检测数据集VOC+YOLO格式2778张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2778 标注数量(xml文件个数):2778 标注数量(txt文件个数):2778 标注…...

长按加速- 解决react - setInterval下无法更新问题
最开始直接setInterval里,useState硬写,发现更新不,固定值 换let,发现dom更新不了 正确做法是用ref 并且pc端可以长按的,只是要用onTouchStart,不要用onMouseDown onTouchStart{handleMouseDown} onTou…...

路网双线合并单线——ArcGIS 解决方法
路网双线合并成单线是一个在地图制作、交通规划以及GIS分析中常见的需求。双线路网定义:具有不同流向、不同平面结构的道路。此外,车道数较多的道路(例如,双黄实线车道数大于4的道路)也可以视为双线路网,本…...
【.NET全栈】ASP.NET开发Web应用——ADO.NET数据访问技术
文章目录 前言一、ADO.NET基础1、ADO.NET架构2、ADO.NET数据提供者 二、连接数据库1、SqlConnection数据库连接类2、使用SqlConnectionStringBuilder连接字符串3、关闭和释放连接4、在web.config配置文件中保存连接字符串5、连接池技术 三、与数据库交互1、使用SqlCommand操作数…...
【机器学习】无监督学习和自监督学习
1. 什么是机器学习 机器学习是一种使计算机系统能够从数据中学习并做出预测或决策的技术和科学领域。它不需要显式地编程来执行特定任务,而是通过使用算法来分析数据和识别模式,以此“学习”如何做出准确的预测或决策。 以下是机器学习的几个关键点&…...
蓝牙新篇章:WebKit的Web Bluetooth API深度解析
蓝牙新篇章:WebKit的Web Bluetooth API深度解析 在物联网(IoT)时代,Web应用与物理设备的交互变得越来越重要。WebKit的Web Bluetooth API开启了一个新时代,允许Web页面直接与蓝牙设备通信。这一API不仅提高了用户体验,还为创新的…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...