当前位置: 首页 > news >正文

WebRTC QOS方法十三.1(TimestampExtrapolator接收时间预估)

一、背景介绍

虽然我们可通过时间戳的差值和采样率计算出发送端视频帧的发送节奏,但是由于网络延迟、抖动、丢包,仅知道视频发送端的发送节奏是明显不够的。我们还需要评估出视频接收端的视频帧的接收节奏,然后进行适当平滑,保证渲染的效果。

WebRTC引入了卡尔曼滤波,通过视频时间戳和到达时间进行调整,提高后续视频帧到达时间估算的准确性和稳定性。TimestampExtrapolator就是实现视频帧的到达时间的估算。选择卡尔曼滤波算法进行调整的原因:

噪声抑制:在实际的网络环境中,由于网络波动、设备性能差异等因素,接收到的视频帧时间戳往往包含噪声。卡尔曼滤波通过其内置的预测和更新机制,能够有效地抑制这些噪声,提高时间戳估算的精度。

动态适应:卡尔曼滤波能够根据历史数据和当前观测值动态调整其内部参数,以适应不断变化的网络环境。这种动态适应性能够更准确地预测未来帧的到达时间。

平滑处理:卡尔曼滤波在预测过程中会考虑历史数据的平滑性,避免因为个别异常值而导致预测结果的大幅波动。这种平滑处理有助于保持视频流的连续性和稳定性。

二、实现细节

1、时间戳记录

VideoStreamBufferController::InsertFrame
->VCMTiming::IncomingTimestamp
->TimestampExtrapolator::Update(Timestamp now, uint32_t ts90khz)now:接收时间ts90khz:该帧视频时间戳

每当接收到一个新的视频帧时,TimestampExtrapolator会记录该视频帧的RTP时间戳和本地接收时间。同时还会记录第一个视频帧的时间戳和本地接收时间,作为参考点。

2、时间差计算

卡尔曼滤波实时更新的观察值有两个:t_ms、residual

t_ms:计算视频帧本地接收时间之差:frame_recv_delta = frame_recv - first_frame_rcv。

residual:视频帧 发送端 两帧发送间隔 - 视频帧 接收端 两帧接收间隔


3、卡尔曼滤波

根据t_ms、residual建立线性关系,实时动态调整w_[0]、w_[1]。

w_[0] :预估的接收视频采样率

w_[1]:预估接收视频首帧时间(缓存成时间戳单位)

4、预估接收时间


根据当前的卡尔曼滤波器的状态估计,TimestampExtrapolator可以根据输入视频时间戳,计算出未来视频帧的预期接收时间。这个预期接收时间会被用于视频渲染流程中,以确保视频帧在正确的时间点被渲染出来。

5、更新渲染时间 

1、RTP报文->组视频帧 函数调用关系
RtpDemuxer::OnRtpPacket
->RtpVideoStreamReceiver2::OnRtpPacket
->RtpVideoStreamReceiver2::ReceivePacket
->RtpVideoStreamReceiver2::OnReceivedPayloadData
->RtpVideoStreamReceiver2::OnInsertedPacket
->RtpVideoStreamReceiver2::OnAssembledFrame
->RtpVideoStreamReceiver2::OnCompleteFrames
->VideoReceiveStream2::OnCompleteFrame
->VideoStreamBufferController::InsertFrame
->VideoStreamBufferController::MaybeScheduleFrameForRelease

        decode_timing_.OnFrameBufferUpdated

        
->VideoStreamBufferController::FrameReadyForDecode
->VideoStreamBufferController::OnFrameReady
->VCMTiming::RenderTime
->VCMTiming::RenderTimeInternal ---计算视频渲染时间核心函数

根据frame_timestamp计算预估的接收时间,更新视频帧渲染时间 

相关文章:

WebRTC QOS方法十三.1(TimestampExtrapolator接收时间预估)

一、背景介绍 虽然我们可通过时间戳的差值和采样率计算出发送端视频帧的发送节奏,但是由于网络延迟、抖动、丢包,仅知道视频发送端的发送节奏是明显不够的。我们还需要评估出视频接收端的视频帧的接收节奏,然后进行适当平滑,保证…...

深入了解 GCC

GCC,全称 GNU Compiler Collection,是 GNU 项目的一部分,是一个功能强大且广泛使用的编译器套件。它支持多种编程语言,包括 C、C、Fortran、Java、Ada 和 Go。GCC 具有高度的可移植性,几乎可以在所有现代计算机体系结构…...

vscode 打开远程bug vscode Failed to parse remote port from server output

vscode 打开远程bug vscode Failed to parse remote port from server output 原因如图: 解决:...

前端组件化技术实践:Vue自定义顶部导航栏组件的探索

摘要 随着前端技术的飞速发展,组件化开发已成为提高开发效率、降低维护成本的关键手段。本文将以Vue自定义顶部导航栏组件为例,深入探讨前端组件化开发的实践过程、优势以及面临的挑战,旨在为广大前端开发者提供有价值的参考和启示。 一、引…...

PyTorch Autograd内部实现

原文: 克補 爆炸篇 25s (youtube.com) 必应视频 (bing.com)https://www.bing.com/videos/riverview/relatedvideo?&qPyTorchautograd&qpvtPyTorchautograd&mid1B8AD76943EFADD541E01B8AD76943EFADD541E0&&FORMVRDGAR 前面只要有一个node的re…...

微信小程序 vant-weapp的 SwipeCell 滑动单元格 van-swipe-cell 滑动单元格不显示 和 样式问题 滑动后删除样式不显示

在微信小程序开发过程中 遇到个坑 此处引用 swipeCell 组件 刚开始是组件不显示 然后又遇到样式不生效 首先排除问题 是否在.json文件中引入了组件 {"usingComponents": {"van-swipe-cell": "vant/weapp/swipe-cell/index","van-cell-gro…...

3.4、matlab实现SGM/BM/SAD立体匹配算法计算视差图

1、matlab实现SGM/BM/SAD立体匹配算法计算视差图简介 SGM(Semi-Global Matching)、BM(Block Matching)和SAD(Sum of Absolute Differences)都是用于计算立体匹配(Stereo Matching)的…...

【瑞吉外卖 | day07】移动端菜品展示、购物车、下单

文章目录 瑞吉外卖 — day71. 导入用户地址簿相关功能代码1.1 需求分析1.2 数据模型1.3 代码开发 2. 菜品展示2.1 需求分析2.2 代码开发 3. 购物车3.1 需求分析3.2 数据模型3.3 代码开发 4. 下单4.1 需求分析4.2 数据模型4.3 代码开发 瑞吉外卖 — day7 移动端相关业务功能 —…...

前端Vue项目中腾讯地图SDK集成:经纬度与地址信息解析的实践

在前端开发中,我们经常需要将经纬度信息转化为具体的地址信息,这对于定位、地图展示等功能至关重要。Vue作为现代前端框架的代表,其组件化开发的特性使得我们能够更高效地实现这一功能。本文将介绍如何在Vue项目中集成腾讯地图SDK&#xff0c…...

鸿蒙开发StableDiffusion绘画应用

Stable Diffusion AI绘画 基于鸿蒙开发的Stable Diffusion应用。 Stable Diffusion Server后端代码 Stable Diffusion 鸿蒙应用代码 AI绘画 ​ 使用Axios发送post网络请求访问AI绘画服务器 api ,支持生成图片保存到手机相册。后端服务是基于flaskStable Diffusion …...

华为OD机考题(HJ61 放苹果)

前言 经过前期的数据结构和算法学习,开始以OD机考题作为练习题,继续加强下熟练程度。 描述 把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法? 注意:如果有7个苹果和3…...

浅谈Visual Studio 2022

Visual Studio 2022(VS2022)提供了众多强大的功能和改进,旨在提高开发者的效率和体验。以下是一些关键功能的概述:12 64位支持:VS2022的64位版本不再受内存限制困扰,主devenv.exe进程不再局限于4GB&#xf…...

spark 动态资源分配dynamicAllocation

动态资源分配,主要是spark在运行中可以相对合理的分配资源。 初始申请的资源远超实际需要,减少executor初始申请的资源比实际需要少很多,增多executorSpark运行多个job,这些job所需资源有的多有的少,动态调整executor…...

【C语言ffmpeg】打开第一个视频

文章目录 前言须知ffmpeg打开文件基本流程图ffmpeg打开媒体文件AVFormatContext *avformat_alloc_context(void);AVFormatContext 成员变量及其作用AVInputFormat *iformatAVOutputFormat *oformatvoid *priv_dataAVIOContext *pbunsigned int nb_streamsAVStream **streamscha…...

【Langchain大语言模型开发教程】模型、提示和解析

🔗 LangChain for LLM Application Development - DeepLearning.AI 学习目标 1、使用Langchain实例化一个LLM的接口 2、 使用Langchain的模板功能,将需要改动的部分抽象成变量,在具体的情况下替换成需要的内容,来达到模板复用效…...

Flutter 中的基本数据类型:num、int 和 double

在 Dart 编程语言中,数值类型的基础是 num,而 int 和 double 则是 num 的子类型。在开发 Flutter 应用时,理解这三者的区别和使用场景是非常重要的。本文将详细介绍 num、int 和 double 的定义及其使用区别。 num num 是 Dart 中的数值类型…...

基于Python+Django,开发的一个在线教育系统

一、项目简介 使用Python的web框架Django进行开发的一个在线教育系统! 二、所需要的环境与组件 Python3.6 Django1.11.7 Pymysql Mysql pure_pagination DjangoUeditor captcha xadmin crispy_forms 三、安装 1. 下载项目后进入项目目录cd Online-educ…...

密码学原理精解【9】

这里写目录标题 迭代密码概述SPN具体算法过程SPN算法基本步骤举例说明注意 轮换-置换网络一、定义与概述二、核心组件三、加密过程四、应用实例五、总结 轮函数理论定义与作用特点与性质应用实例总结 迭代密码理论定义与原理特点与优势应用场景示例发展趋势 AES特点概述一、算法…...

【Nacos】Nacos服务注册与发现 心跳检测机制源码解析

在前两篇文章,介绍了springboot的自动配置原理,而nacos的服务注册就依赖自动配置原理。 Nacos Nacos核心功能点 服务注册 :Nacos Client会通过发送REST请求的方式向Nacos Server注册自己的服务,提供自身的元数据,比如ip地址、端…...

python 66 个冷知识 0720

66个有趣的Python冷知识 一行反转列表 使用切片一行反转列表:reversed_list my_list[::-1] 统计文件单词数量 使用 collections.Counter 统计文件中每个单词的数量:from collections import Counter; with open(file.txt) as f: word_count Counter(f…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...