【人工智能】机器学习 -- 贝叶斯分类器
目录
一、使用Python开发工具,运行对iris数据进行分类的例子程序NaiveBayes.py,熟悉sklearn机器实习开源库。
1. NaiveBayes.py
2. 运行结果
二、登录https://archive-beta.ics.uci.edu/
三、使用sklearn机器学习开源库,使用贝叶斯分类器对breast-cancer-wisconsin.data进行分类。
1. Python代码
2. 运行截图
四、用java实现贝叶斯分类器算法,并对上述数据进行分类。
1. 流程图
2. 数据结构
3. 算法
4. 测试结果
五、心得体会
一、使用Python开发工具,运行对iris数据进行分类的例子程序NaiveBayes.py,熟悉sklearn机器实习开源库。
1. NaiveBayes.py
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
import matplotlib# %matplotlib inline# 生成所有测试样本点
def make_meshgrid(x, y, h=.02):x_min, x_max = x.min() - 1, x.max() + 1y_min, y_max = y.min() - 1, y.max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))return xx, yy# 对测试样本进行预测,并显示
def plot_test_results(ax, clf, xx, yy, **params):Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)ax.contourf(xx, yy, Z, **params)# 载入iris数据集
iris = datasets.load_iris()
# 只使用前面连个特征
X = iris.data[:, :2]
# 样本标签值
y = iris.target# 创建并训练正态朴素贝叶斯分类器
clf = GaussianNB()
clf.fit(X, y)title = ('GaussianBayesClassifier')fig, ax = plt.subplots(figsize=(5, 5))
plt.subplots_adjust(wspace=0.4, hspace=0.4)X0, X1 = X[:, 0], X[:, 1]
# 生成所有测试样本点
xx, yy = make_meshgrid(X0, X1)# 显示测试样本的分类结果
plot_test_results(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
# 显示训练样本
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()
2. 运行结果

二、登录https://archive-beta.ics.uci.edu/
可以查看提供的各类公共数据源,找到Breast Cancer Wisconsin (Original)数据并下载。

也可以直接输入网址:
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
下载wisconsin提供的乳腺肿瘤数breast-cancer-wisconsin.data(已经处理好的数据)和breast-cancer-wisconsin.names(对数据的说明,可以用写字体打开)
在我上传的资源可以免费下载!!解压即可用【在本文置顶】
下载之后如下

三、使用sklearn机器学习开源库,使用贝叶斯分类器对breast-cancer-wisconsin.data进行分类。
1. Python代码


from sklearn import datasets
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, classification_report
import pandas as pd
import numpy as np# 构造列标签名字
column = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli','Mitoses', 'Class']# 读取数据
data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=column)print(data)# 缺失值进行处理
data = data.replace(to_replace='?', value=np.nan)
# 删除
data = data.dropna()# 1-10列是特征值,最后一列10 代表11列目标值
x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25)#
clf = GaussianNB()clf.fit(x_train, y_train)title = ('GaussianBayesClassifier')
y_predict = clf.predict(x_test)# 首先用分类器自带的.score方法来对准确性进行打印:
print("准确率:", clf.score(x_test, y_test))print("召回率:", classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"]))
2. 运行截图

四、用java实现贝叶斯分类器算法,并对上述数据进行分类。
1. 流程图

图4-1 主程序流程图

图4-2 贝叶斯分类器流程图

图4-3 计算条件概率流程图
2. 数据结构
(1)用一个二维动态数组存储测试和训练数据。

(2)用一个哈希表存储分类对应的数据
<键:不同的分类,值:分类的数组> 便于计算后验概率。

3. 算法
(1)对breast-cancer-wisconsin.data进行分类:分训练集和测试集再进行一个分类处理:

(2)分类

(3)计算条件概率

(4)贝叶斯分类器

4. 测试结果
(1)当测试和训练比例1:1


(2)当训练集为70%,测试集为30%


五、心得体会
更加深刻地理解了课件上的例子,实现了一个朴素贝叶斯算法。在实现的过程发现,如果不用拉普拉斯修正,结果是不合理的。
相关文章:
【人工智能】机器学习 -- 贝叶斯分类器
目录 一、使用Python开发工具,运行对iris数据进行分类的例子程序NaiveBayes.py,熟悉sklearn机器实习开源库。 1. NaiveBayes.py 2. 运行结果 二、登录https://archive-beta.ics.uci.edu/ 三、使用sklearn机器学习开源库,使用贝叶斯分类器…...
深入理解 React 的 useSyncExternalStore Hook
深入理解 React 的 useSyncExternalStore Hook 大家好,今天我们来聊聊 React 18 引入的一个新 Hook:useSyncExternalStore。这个 Hook 主要用于与外部存储同步状态,特别是在需要确保状态一致性的场景下非常有用。本文将深入探讨这个 Hook 的…...
河南萌新联赛2024第(一)场:河南农业大学
C-有大家喜欢的零食吗_河南萌新联赛2024第(一)场:河南农业大学 (nowcoder.com) 思路:匈牙利算法的板子题. 二部图 int n; vector<int> vct[505]; int match[505],vis[505]; bool dfs(int s){for(auto v:vct[s]){if(vis[v]) continue;…...
K8S 上部署 Emqx
文章目录 安装方式一:1. 快速部署一个简单的 EMQX 集群:2. 部署一个持久化的 EMQX 集群:3. 部署 EMQX Edge 集群和 EMQX 企业版集群: 安装方式二:定制化部署1. 使用 Pod 直接部署 EMQX Broker2. 使用 Deoloyment 部署 …...
[React]利用Webcomponent封装React组件
[React]利用Webcomponent封装React组件 为什么这么做 我个人认为,最重要的点是可以很方便地跨框架挂载和卸载wc元素(至少我在项目里是这么玩的),此外,基于wc的css沙箱以及它的shadowRoot机制,可以提供一套…...
Linux C服务需要在A服务和B服务都启动成功后才能启动
需求 C服务需要在A服务和B服务都启动成功后才能启动 服务编号服务名服务Anginx.service服务Bmashang.service服务Credis.service 实验 如果您想要 redis.service 在 nginx.service 和 mashang.service 都成功启动后才能启动,那么需要在 redis.service 的服务单元…...
VSCODE 下 openocd Jlink 的配置笔记
title: VSCODE 下 openocd Jlink 的配置笔记 tags: STM32HalCubemax 文章目录 内容VSCODE 下 openocd Jlink 的配置笔记安装完成后修改jlink的配置文件然后修改你的下载器为jlink烧录你的项目绝对会出现下面的问题那么打开下载的第一个软件 (点到这个jlink右键&…...
JVM--HostSpot算法细节实现
1.根节点枚举 定义: 我们以可达性分析算法中从GC Roots 集合找引用链这个操作作为介绍虚拟机高效实现的第一个例 子。固定可作为GC Roots 的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如 栈帧中的本地变量表&a…...
【Unity实战100例】Unity声音可视化多种显示效果
目录 一、技术背景 二、界面搭建 三、 实现 UIAudioVisualizer 基类 四、实现 AudioSampler 类 五、实现 IAudioSample 接口 六、实现MusicAudioVisualizer 七、实现 MicrophoneAudioManager 类 八、实现 MicrophoneAudioVisualizer 类 九、源码下载 Unity声音可视化四…...
[Cesium for Supermap] 加载3dTiles,点击获取属性
代码: // 设为椭球var obj [6378137.0, 6378137.0, 6356752.3142451793];Cesium.Ellipsoid.WGS84 Object.freeze(new Cesium.Ellipsoid(obj[0], obj[1], obj[2]));var viewer new Cesium.Viewer(cesiumContainer);var scene viewer.scenescene.lightSource.ambi…...
【stm32项目】基于stm32智能宠物喂养(完整工程资料源码)
基于STM32宠物喂养系统 前言: 随着人们生活幸福指数的提高,越来越多的家庭选择养宠物来为生活增添乐趣。然而,由于工作等原因,许多主人无法及时为宠物提供充足的食物与水。为了解决这一问题,我设计了一款便捷的宠物喂…...
选择Maya进行3D动画制作与渲染的理由
如果你对3D动画充满热情并追求成为专业3D动画师的梦想,你一定听说过Maya——近年来3D动画的行业标准。Maya被3D艺术家广泛使用,你是否想知道为什么Maya总是他们的首选?下面一起来了解下。 一、什么是Maya? 由Autodesk开发的Maya是…...
Promise应用
创建一个 Promise 对象 let promise showLabelText() {return new Promise((resolve, reject) > {axios({method: "post",url: "/code/expose/interface/queryActionPlan",data: { situationOneId: 19999, labels: [1, 2, 3] }}).then(response > {…...
51单片机嵌入式开发:13、STC89C52RC 之 RS232与电脑通讯
STC89C52RC 之 RS232与电脑通讯 第十三节课,RS232与电脑通讯1 概述2 Uart介绍2.1 概述2.2 STC89C52UART介绍2.3 STC89C52 UART寄存器介绍2.4 STC89C52 UART操作 3 C51 UART总结 第十三节课,RS232与电脑通讯 1 概述 RS232(Recommended Stand…...
当代政治制度(练习题)
当代政治制度(练习题) Rz整理 仅供参考 干部鉴定必须坚持德才兼备原则,考核内容包括(A.德 B.廉 C.能 D.勤 F.绩 ) A.德 B.廉 C.能 D.勤 E.信 F.绩我国干部任用的方式主要包括(A.考任 C.委任 D.聘任 F.选任…...
前端pc和小程序接入快递100(跳转方式和api方式)====实时查询接口
文章目录 跳转方式微信小程序(我以uniapp为例)pc api接入说明关于签名计算成功示例 跳转方式 没有任何开发成本,直接一键接入 可以直接看官方文档 https://www.kuaidi100.com/openapi/api_wxmp.shtml 微信小程序(我以uniapp为例…...
电脑永久性不小心删除了东西还可以恢复吗 电脑提示永久性删除文件怎么找回 怎么恢复电脑永久删除的数据
永久删除电脑数据的操作,对于很多常用电脑设备的用户来说,可以说时有发生!但是,因为这些情况大都发生在不经意间,所以每每让广大用户感觉到十分苦恼。永久删除也有后悔药,轻松找回电脑中误删的文件。恢复文…...
LeetCode热题100刷题16:74. 搜索二维矩阵、33. 搜索旋转排序数组、153. 寻找旋转排序数组中的最小值、98. 验证二叉搜索树
74. 搜索二维矩阵 class Solution { public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int row matrix.size();int col matrix[0].size();for(int i0;i<row;i) {//先排除一下不存在的情况if(i>0&&matrix[i][0]>target…...
C++仿函数
在C中,我们经常需要对类中的元素进行比较,例如在排序、查找等操作中。为了使类更加灵活,我们可以通过自定义比较函数来实现不同的比较方式。在本文中,我们将探讨如何在类中使用仿函数和 Lambda 表达式来定义自定义比较函数。 1. …...
文献阅读:tidyomics 生态系统:增强组学数据分析
文献介绍 文献题目: The tidyomics ecosystem: enhancing omic data analyses 研究团队: Stefano Mangiola(澳大利亚沃尔特和伊丽莎霍尔医学研究所)、Michael I. Love(美国北卡罗来纳大学教堂山分校)、Ant…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
