当前位置: 首页 > news >正文

二、ElasticSearch基础语法

目录

  • 一、简单了解ik分词器(分词效果)
    • 1.standard(单字分词器,es默认分词器)
    • 2.ik_smart分词(粗粒度的拆分)
    • 3.ik_max_word分词器(最细粒度拆分)
  • 二、指定默认分词器
    • 1.为索引指定默认分词器
  • 三、ES操作数据
    • 1.概述
    • 2.创建索引
    • 3.查询索引
    • 4.删除索引
    • 5.添加文档
    • 6.查询索引库
      • 6.1查询索引库中所有内容
      • 6.2简单等值查询
      • 6.3简单范围查询
      • 6.4 通过id进行in查询
      • 6.5分页查询
      • 6.6对查询结果只显示指定字段
      • 6.7排序查询
    • 7.修改索引内容
    • 8.删除索引内容
    • 9.PUT和POST区别

一、简单了解ik分词器(分词效果)

这个是底层自带的不属于ik分词,ik分词器属于第三方分词器

1.standard(单字分词器,es默认分词器)

POST _analyze
{"analyzer":"standard","text":"我爱学搜索引擎"
}

效果(把每一个字都拆分,每个字都被分词了)

{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "<IDEOGRAPHIC>","position" : 0},{"token" : "爱","start_offset" : 1,"end_offset" : 2,"type" : "<IDEOGRAPHIC>","position" : 1},{"token" : "学","start_offset" : 2,"end_offset" : 3,"type" : "<IDEOGRAPHIC>","position" : 2},{"token" : "搜","start_offset" : 3,"end_offset" : 4,"type" : "<IDEOGRAPHIC>","position" : 3},{"token" : "索","start_offset" : 4,"end_offset" : 5,"type" : "<IDEOGRAPHIC>","position" : 4},{"token" : "引","start_offset" : 5,"end_offset" : 6,"type" : "<IDEOGRAPHIC>","position" : 5},{"token" : "擎","start_offset" : 6,"end_offset" : 7,"type" : "<IDEOGRAPHIC>","position" : 6}]
}

2.ik_smart分词(粗粒度的拆分)

和单字分词器的区别,就是按照比较粗的粒度去分词,把搜索引擎当成一个词来分词

 POST _analyze
{"analyzer":"ik_smart","text":"我爱学搜索引擎"
}

效果

{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "CN_CHAR","position" : 0},{"token" : "爱","start_offset" : 1,"end_offset" : 2,"type" : "CN_CHAR","position" : 1},{"token" : "学","start_offset" : 2,"end_offset" : 3,"type" : "CN_CHAR","position" : 2},{"token" : "搜索引擎","start_offset" : 3,"end_offset" : 7,"type" : "CN_WORD","position" : 3}]
}

3.ik_max_word分词器(最细粒度拆分)

按照最细粒度进行分词,把认为能组成一个词的情况都拆分。

POST _analyze
{"analyzer":"ik_max_word","text":"我爱学搜索引擎"
}

效果

{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "CN_CHAR","position" : 0},{"token" : "爱","start_offset" : 1,"end_offset" : 2,"type" : "CN_CHAR","position" : 1},{"token" : "学","start_offset" : 2,"end_offset" : 3,"type" : "CN_CHAR","position" : 2},{"token" : "搜索引擎","start_offset" : 3,"end_offset" : 7,"type" : "CN_WORD","position" : 3},{"token" : "搜索","start_offset" : 3,"end_offset" : 5,"type" : "CN_WORD","position" : 4},{"token" : "索引","start_offset" : 4,"end_offset" : 6,"type" : "CN_WORD","position" : 5},{"token" : "引擎","start_offset" : 5,"end_offset" : 7,"type" : "CN_WORD","position" : 6}]
}

二、指定默认分词器

1.为索引指定默认分词器

创建一个索引(mysql中对应database),名为test_index_database
指定默认分词器为:ik_max_word

PUT /test_index_database
{"settings":{"index":{"analysis.analyzer.default.type":"ik_max_word"}}
}

三、ES操作数据

在7.x版本以后类型默认为_doc

1.概述

es是面向文档的,它可以储存整个对象或者文档,对该文档进行索引、搜索、排序、过滤。
使用json作为文档序列化格式

2.创建索引

PUT /test_index01

3.查询索引

GET /test_index01

查询信息如下
其中number_of_shards(分片数量)
number_of_replicas(副本数量)
es7.6.1版本默认的分片和副本数量为1,这个默认数量和你es的版本有关系。可能其他版本默认不是1

{"test_index01" : {"aliases" : { },"mappings" : { },"settings" : {"index" : {"creation_date" : "1678969193239","number_of_shards" : "1","number_of_replicas" : "1","uuid" : "n6tD0dyxTB2aOQjqyDK0QQ","version" : {"created" : "7060199"},"provided_name" : "test_index01"}}}
}

4.删除索引

DELETE /test_index01

5.添加文档

格式: PUT /索引名称/类型/id

PUT /test_index01/_doc/1
{
"name": "张三",
"sex": 1,
"age": 25,
"address": "北京",
"remark": "java"
}

执行结果
_index:索引名称
_type:类型
_id:id
_version:版本(因为这条数据可能会被修改,所以版本可能不是1)
result:结果(操作结果,创建,更新等)

{"_index" : "test_index01","_type" : "_doc","_id" : "1","_version" : 1,"result" : "created","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 0,"_primary_term" : 1
}

6.查询索引库

查询格式:GET /索引名称/类型/id

GET /test_index01/_doc/1

查询结果

{"_index" : "test_index01","_type" : "_doc","_id" : "1","_version" : 1,"_seq_no" : 0,"_primary_term" : 1,"found" : true,"_source" : {"name" : "张三","sex" : 1,"age" : 25,"address" : "北京","remark" : "java"}
}

6.1查询索引库中所有内容

格式: GET /索引名称/类型/_search

GET /test_index01/_doc/_search

相当于mysql中的 select *
结果(我这里只有一条数据)

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{"took" : 1,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 1,"relation" : "eq"},"max_score" : 1.0,"hits" : [{"_index" : "test_index01","_type" : "_doc","_id" : "1","_score" : 1.0,"_source" : {"name" : "秀儿","sex" : 1,"age" : 25,"address" : "上海","remark" : "java"}}]}
}

6.2简单等值查询

格式: GET /索引名称/类型/_search?q=:**

GET /test_index01/_doc/_search?q=age:25

6.3简单范围查询

格式: GET /索引名称/类型/_search?q=***[left TO tight]

GET /test_index01/_doc/_search?q=age[25 TO 26]

6.4 通过id进行in查询

格式: GET /索引名称/类型/_mget

GET /test_index01/_doc/_mget
{
"ids":["1","2"]
}

6.5分页查询

GET /索引名称/类型/_search?from=0&size=1
GET /索引名称/类型/_search?q=条件&from=0&size=1

GET /test_index01/_doc/_search?from=0&size=1
GET /test_index01/_doc/_search?q=age[25 TO 26]&from=0&size=1

6.6对查询结果只显示指定字段

GET /索引名称/类型/_search?_source=字段,字段

GET /test_index01/_doc/_search?_source=name,age

6.7排序查询

GET /索引名称/类型/_search?sort=字段 desc

GET /test_index01/_doc/_search?sort=age:desc
GET /test_index01/_doc/_search?sort=age:asc

7.修改索引内容

格式:PUT /索引名称/类型/id

PUT /test_index01/_doc/1
{
"name": "秀儿",
"sex": 1,
"age": 25,
"address": "上海",
"remark": "java"
}

结果

{"_index" : "test_index01","_type" : "_doc","_id" : "1","_version" : 2,"result" : "updated","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 1,"_primary_term" : 1
}

8.删除索引内容

格式: DELETE /索引名称/类型/id

DELETE /test_index01/_doc/1

结果

{"_index" : "test_index01","_type" : "_doc","_id" : "1","_version" : 3,"result" : "deleted","_shards" : {"total" : 2,"successful" : 1,"failed" : 0},"_seq_no" : 2,"_primary_term" : 1
}

9.PUT和POST区别

post和put都能实现创建和更新操作
①PUT:
(1)需要对一个具体的资源进行操作,所以必须要有id才能更新和创建操作。没有就会执行失败
(2)只会将json数据全都进行替换
(3)与delete都是幂等操作,无论操作多少次结果都一样
②POST:
(1)针对整个资源集合进行操作,如果不写id就会由es生成一个唯一的id进行创建文档,如果指定id则会对应创建或者更新文档。
(2)只会更新相同字段的值

相关文章:

二、ElasticSearch基础语法

目录一、简单了解ik分词器(分词效果)1.standard(单字分词器&#xff0c;es默认分词器)2.ik_smart分词(粗粒度的拆分)3.ik_max_word分词器&#xff08;最细粒度拆分&#xff09;二、指定默认分词器1.为索引指定默认分词器三、ES操作数据1.概述2.创建索引3.查询索引4.删除索引5.添…...

Yolov8详解与实战

文章目录摘要模型详解C2F模块Losshead部分模型实战训练COCO数据集下载数据集COCO转yolo格式数据集&#xff08;适用V4&#xff0c;V5&#xff0c;V6&#xff0c;V7&#xff0c;V8&#xff09;配置yolov8环境训练测试训练自定义数据集Labelme数据集摘要 YOLOv8 是 ultralytics …...

多线程案例——阻塞队列

目录 一、阻塞队列 1. 生产者消费者模型 &#xff08;1&#xff09;解耦合 &#xff08;2&#xff09;“削峰填谷” 2. 标准库中的阻塞队列 3. 自己实现一个阻塞队列&#xff08;代码&#xff09; 4. 自己实现生产者消费者模型&#xff08;代码&#xff09; 一、阻塞队列…...

学习优秀博文(【国产MCU移植】手把手教你使用RT-Thread制作GD32系列BSP)有感 | 文末赠书5本

学习优秀博文&#xff08;【guo产MCU移植】手把手教你使用RT-Thread制作GD32系列BSP&#xff09;有感 一篇优秀的博文是什么样的&#xff1f;它有什么规律可循吗&#xff1f;优秀的guo产32位单片机处理器是否真的能成功替换掉stm32的垄断地位&#xff1f; 本文博主以亲身经历聊…...

写用例写的焦头烂额?看看摸鱼5年的老点工是怎么写的...

给你个需求&#xff0c;你要怎么转变成最终的用例&#xff1f; 直接把需求文档翻译一下就完事了。 老点工拿到需求后的标准操作&#xff1a; 第一步&#xff1a;解析需求 先解析需求-找出所有需求中的动词&#xff0c;再列出所有测试点。测试点过程不断发散&#xff0c;对于…...

基于深度学习的鸟类检测识别系统(含UI界面,Python代码)

摘要&#xff1a;鸟类识别是深度学习和机器视觉领域的一个热门应用&#xff0c;本文详细介绍基于YOLOv5的鸟类检测识别系统&#xff0c;在介绍算法原理的同时&#xff0c;给出Python的实现代码以及PyQt的UI界面。在界面中可以选择各种鸟类图片、视频以及开启摄像头进行检测识别…...

零基础搭建Tomcat集群(超详细)

&#x1f497;推荐阅读文章&#x1f497; &#x1f338;JavaSE系列&#x1f338;&#x1f449;1️⃣《JavaSE系列教程》&#x1f33a;MySQL系列&#x1f33a;&#x1f449;2️⃣《MySQL系列教程》&#x1f340;JavaWeb系列&#x1f340;&#x1f449;3️⃣《JavaWeb系列教程》…...

机器学习自学笔记——聚类

聚类的基本概念 聚类&#xff0c;顾名思义&#xff0c;就是将一个数据集中各个样本点聚集成不同的“类”。每个类中的样本点都有某些相似的特征。比如图书馆中&#xff0c;会把成百上千的书分成不同的类别&#xff1a;科普书、漫画书、科幻书等等&#xff0c;方便人们查找。每…...

注意下C语言整形提升

C语言整形提升 C语言整形提升是指在表达式中使用多种类型的数据时&#xff0c;编译器会自动将较小的类型转换为较大的类型&#xff0c;以便进行运算。在C语言中&#xff0c;整型提升规则如下&#xff1a; 如果表达式中存在short类型&#xff0c;则将其自动转换为int类型。 如…...

Go panic的学习

一、前言 我们的应用程序常常会出现异常&#xff0c;包括由运行时检测到的异常或者应用开发者自己抛出的异常。 异常在一些其他语言中&#xff0c;如c、java&#xff0c;被叫做Exception&#xff0c;主要由抛出异常和捕获异常两部分组成。异常在go语言中&#xff0c;叫做pani…...

讲解Linux中samba理论讲解及Linux共享访问

♥️作者&#xff1a;小刘在C站 ♥️个人主页&#xff1a;小刘主页 ♥️每天分享云计算网络运维课堂笔记&#xff0c;努力不一定有收获&#xff0c;但一定会有收获加油&#xff01;一起努力&#xff0c;共赴美好人生&#xff01; ♥️夕阳下&#xff0c;是最美的绽放&#xff0…...

【C++笔试强训】第三十二天

&#x1f387;C笔试强训 博客主页&#xff1a;一起去看日落吗分享博主的C刷题日常&#xff0c;大家一起学习博主的能力有限&#xff0c;出现错误希望大家不吝赐教分享给大家一句我很喜欢的话&#xff1a;夜色难免微凉&#xff0c;前方必有曙光 &#x1f31e;。 &#x1f4a6;&a…...

OpenAI GPT-4震撼发布:多模态大模型

OpenAI GPT-4震撼发布&#xff1a;多模态大模型发布要点GPT4的新功能GPT-4:我能玩梗图GPT4:理解图片GPT4:识别与解析图片内容怎样面对GPT4申请 GPT-4 API前言&#xff1a; &#x1f3e0;个人主页&#xff1a;以山河作礼。 &#x1f4dd;​&#x1f4dd;:本文章是帮助大家更加了…...

手把手教你 在linux上安装kafka

目录 1. 准备服务器 2. 选一台服务器配置kafka安装包 2.1 下载安装包 2.2 解压安装包 2.3 修改配置文件 3. 分发安装包到其他机器 4. 修改每台机器的broker.id 5. 配置环境变量 6. 启停kafka服务 6.1 启动kafak服务 6.2 停止kafka服务 1. 准备服务器 1.买几台云服务…...

Spring Cloud(微服务)学习篇(五)

Spring Cloud(微服务)学习篇(五) 1 nacos配置文件的读取 1.1 访问localhost:8848/index.html并输入账户密码后进入nacos界面并点击配置列表 1.2 点击右侧的号 1.3 点击加号后,进入新建配置界面,并做好如下配置 1.4 往下翻动,点击发布按钮 1.5 发布成功后的界面 1.6 在pom.xml…...

道阻且长,未来可期,从GPT-4窥得通用人工智能时代的冰山一角!

大家这两天是不是又被满屏的ChatGPT相关的文章信息给轰炸得不轻&#xff0c;说实话&#xff0c;我真的对ChatGPT的热度如此经久不衰这个问题非常感兴趣。从去年刚面世时&#xff0c;小范围内造成的行业震荡&#xff0c;到今年二月份铺天盖地得铺舆论造势&#xff0c;引发全民热…...

百度将?百度已!

仿佛一夜之间&#xff0c;创业公司OpenAI旗下的ChatGPT就火遍全球。这是一场十分罕见的科技盛宴。下到普通用户&#xff0c;上到各科技大厂都在讨论ChatGPT的前景&#xff0c;国外的微软、谷歌&#xff0c;国内的百度、腾讯、阿里等等都在布局相关业务。比尔盖茨更是称ChatGPT与…...

内核实验(三):编写简单Linux内核模块,使用Qemu加载ko做测试

文章目录一、篇头二、QEMU&#xff1a;挂载虚拟分区2.1 创建 sd.ext4.img 虚拟分区2.2 启动 Qemu2.3 手动挂载 sd.ext4.img三、实现一个简单的KO3.1 目录文件3.2 Makefile3.3 编译3.3.1 编译打印3.3.2 生成文件3.4 检查&#xff1a;objdump3.4.1 objdump -dS test\_1.ko3.4.2 o…...

女子举重问题

一、问题的描述 问题及要求 1、搜集各个级别世界女子举重比赛的实际数据。分别建立女子举重比赛总成绩的线性模型、幂函数模型、幂函数改进模型&#xff0c;并最终建立总冠军评选模型。 应用以上模型对最近举行的一届奥运会女子举重比赛总成绩进行排名&#xff0c;并对模型及…...

试题 历届真题 循环小数【第十一届】【决赛】【Python】

试题 历届真题 循环小数【第十一届】【决赛】【Python】 题目来源&#xff1a;第十一届蓝桥杯决赛 http://lx.lanqiao.cn/problem.page?gpidT2891 资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...