当前位置: 首页 > news >正文

昇思25天学习打卡营第16天|基于MindSpore通过GPT实现情感分类

文章目录

      • 昇思MindSpore应用实践
          • 1、基于MindSpore通过GPT实现情感分类
            • GPT 模型(Generative Pre-Training)简介
            • imdb影评数据集情感分类
          • 2、Tokenizer导入预训练好的GPT
          • 3、基于预训练的GPT微调实现情感分类
      • Reference

昇思MindSpore应用实践

本系列文章主要用于记录昇思25天学习打卡营的学习心得。

1、基于MindSpore通过GPT实现情感分类
GPT 模型(Generative Pre-Training)简介

GPT-1模型是一种基于神经网络的自回归(AR)语言模型。该模型使用了“Transformer”的编解码架构,一种新型的序列到序列(Seq2Seq)模型,能够在处理长序列数据时避免传统的循环神经网络(Recurrent Neural Network,RNN)中存在的梯度消失问题。

Transformer架构中的关键组件包括多头自注意力机制和残差连接等,GPT使用了Transformer的解码器部分。
在这里插入图片描述
预训练技术:GPT-1使用了一种称为“生成式预训练”(Generative Pre-Training,GPT)的技术。
预训练分为两个阶段:预训练和微调(fine-tuning)。

在预训练阶段,GPT-1使用了大量的无标注文本数据集,例如维基百科和网页文本等。通过最大化预训练数据集上的log-likelihood来训练模型参数。
微调阶段,GPT-1将预训练模型的参数用于特定的自然语言处理任务,如文本分类和问答系统等。

多层模型:GPT-1模型由多个堆叠的Transformer编码器组成,每个编码器包含多个注意力头和前向神经网络。这使得模型可以从多个抽象层次对文本进行建模,从而更好地捕捉文本的语义信息。

通过使用上述预训练任务,研究团队成功地训练出了一个大规模的语言模型GPT。该模型在多项语言理解任务上取得了显著的成果,包括阅读理解、情感分类和自然语言推理等任务。

imdb影评数据集情感分类
import osimport mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nnfrom mindnlp.dataset import load_datasetfrom mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracyimdb_ds = load_dataset('imdb', split=['train', 'test'])
imdb_train = imdb_ds['train']
imdb_test = imdb_ds['test']imdb_train.get_dataset_size()import numpy as npdef process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):is_ascend = mindspore.get_context('device_target') == 'Ascend'def tokenize(text):if is_ascend:tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)else:tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)return tokenized['input_ids'], tokenized['attention_mask']if shuffle:dataset = dataset.shuffle(batch_size)# map datasetdataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'attention_mask'])dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels")# batch datasetif is_ascend:dataset = dataset.batch(batch_size)else:dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),'attention_mask': (None, 0)})return dataset
2、Tokenizer导入预训练好的GPT
from mindnlp.transformers import GPTTokenizer
# tokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt')# add sepcial token: <PAD>
special_tokens_dict = {"bos_token": "<bos>","eos_token": "<eos>","pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)# split train dataset into train and valid datasets,训练集和验证集分割
imdb_train, imdb_val = imdb_train.split([0.7, 0.3])dataset_train = process_dataset(imdb_train, gpt_tokenizer, shuffle=True)
dataset_val = process_dataset(imdb_val, gpt_tokenizer)
dataset_test = process_dataset(imdb_test, gpt_tokenizer)next(dataset_train.create_tuple_iterator())[Tensor(shape=[4, 512], dtype=Int64, value=[[11295,   246,   244 ... 40480, 40480, 40480],[  616,   509,   246 ... 40480, 40480, 40480],[  616,  4894,   498 ... 40480, 40480, 40480],[  589,   500,   589 ... 40480, 40480, 40480]]),Tensor(shape=[4, 512], dtype=Int64, value=[[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0]]),Tensor(shape=[4], dtype=Int32, value= [0, 0, 0, 1])]
3、基于预训练的GPT微调实现情感分类
from mindnlp.transformers import GPTForSequenceClassification
from mindspore.experimental.optim import Adam# set bert config and define parameters for training
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)metric = Accuracy()# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)trainer = Trainer(network=model, train_dataset=dataset_train,eval_dataset=dataset_train, metrics=metric,epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],jit=False)trainer.run(tgt_columns="labels")

在这里插入图片描述

Reference

[1] 北方的郎-从GPT-1到GPT-4,GPT系列模型详解
[2] 昇思大模型平台
[3] 昇思官方文档-基于MindSpore通过GPT实现情感分类

相关文章:

昇思25天学习打卡营第16天|基于MindSpore通过GPT实现情感分类

文章目录 昇思MindSpore应用实践1、基于MindSpore通过GPT实现情感分类GPT 模型&#xff08;Generative Pre-Training&#xff09;简介imdb影评数据集情感分类 2、Tokenizer导入预训练好的GPT3、基于预训练的GPT微调实现情感分类 Reference 昇思MindSpore应用实践 本系列文章主…...

服务器借助笔记本热点WIFI上网

一、同一局域网环境 1、当前环境&#xff0c;已有交换机组网环境&#xff0c;服务器已配置IP信息。 设备ip服务器125.10.100.12交换机125.10.100.0/24笔记本125.10.100.39 2、拓扑图 #mermaid-svg-D4moqMym9i0eeRBm {font-family:"trebuchet ms",verdana,arial,sa…...

开发实战中Git的常用操作

Git基础操作 1.初始化仓库 git init解释&#xff1a;在当前目录中初始化一个新的Git仓库。 2.克隆远程仓库 git clone <repository-url>解释&#xff1a;从远程仓库克隆一个完整的Git仓库到本地。 3.检查当前状态 git status解释&#xff1a;查看当前工作目录的状态…...

python调用chrome浏览器自动化如何选择元素

功能描述&#xff1a;在对话框输入文字&#xff0c;并发送。 注意&#xff1a; # 定位到多行文本输入框并输入内容。在selenium 4版本中&#xff0c;元素定位需要填写父元素和子元素名。 textarea driver.find_element(By.CSS_SELECTOR,textarea.el-textarea__inner) from …...

深入理解JS中的排序

在JavaScript开发中,排序是一项基础而重要的操作。本文将探讨JavaScript中几种常见的排序算法,包括它们的原理、实现方式以及适用场景。 1、冒泡排序 1.1、原理 通过比较相邻两个数的大小,交换位置排序:如果后一个数比前一个数小,则交换两个数的位置,重复这个过程,直…...

Kafka之存储设计

文章目录 1. 分区和副本的存储结构1. 分区和副本的分布2. 存储目录结构3. 文件描述 2. 相关配置3. 数据文件类型4. 数据定位原理LogSegment 类UnifiedLog 类 5. 副本数据同步HW水位线LEO末端偏移量HW更新原理 6. 数据清除 1. 分区和副本的存储结构 在一个多 broker 的 Kafka 集…...

Python面试整理-Python中的函数定义和调用

在Python中,函数是一种封装代码的方式,使得代码模块化和复用性更强。定义和调用函数是Python编程中的基本技能。以下是关于如何在Python中定义和调用函数的详细介绍: 函数定义 函数在Python中使用def关键字进行定义。函数体开始前,通常有一个可选的文档字符串(docstring)…...

HTTP协议、Wireshark抓包工具、json解析、天气爬虫

HTTP超文本传输协议 HTTP&#xff08;Hyper Text Transfer Protocol&#xff09;&#xff1a; 全称超文本传输协议&#xff0c;是用于从万维网&#xff08;WWW:World Wide Web &#xff09;服务器传输超文本到本地浏览器的传送协议。 HTTP 协议的重要特点&#xff1a; 一发一收…...

electron项目中实现视频下载保存到本地

第一种方式&#xff1a;用户自定义选择下载地址位置 渲染进程 // 渲染进程// 引入 import { ipcRenderer } from "electron";// 列表行数据下载视频操作&#xff0c;diffVideoUrl 是视频请求地址 handleDownloadClick(row) {if (!row.diffVideoUrl) {this.$message…...

基于chrome插件的企业应用

一、chrome插件技术介绍 1、chrome插件组件介绍 名称 职责 访问权限 DOM访问情况 popup 弹窗页面。即打开形式是通过点击在浏览器右上方的icon&#xff0c;一个弹窗的形式。 注: 展示维度 browser_action:所有页面 page_action:指定页面 可访问绝大部分api 不可以 bac…...

unittest框架和pytest框架区别及示例

unittest框架和pytest框架区别及示例 类型unittest框架pytest框架unittest框架示例pytest框架示例安装python内置的一个单元测试框架,标准库&#xff0c;不需要安装第三方单元测试库&#xff0c;需要安装使用时直接引用 import unittest安装命令&#xff1a;pip3 install pyte…...

IDEA性能优化方法解决卡顿

文章目录 前言一、可以采取以下措施&#xff1a;二、VM Options的参数解释1. 内存设置2. 性能调优3. GC&#xff08;垃圾回收&#xff09;调优4. 调试和诊断5. 其它设置6.设置 VM Options 的步骤&#xff1a; 总结 前言 我们在使用 IntelliJ IDEA的时候有时候会觉得卡顿&#x…...

Mysql集合转多行

mysql 集合转多行 SELECT substring_index(substring_index(t1.group_ids, ,, n), ,, -1) AS group_id FROM (select 908,909 as group_ids ) t1, (SELECT rownum : rownum 1 AS n FROM ( SELECT rownum : 0 ) r, orders ) t2 WHERE n < ( LENGTH( t1.group_ids ) - LENGT…...

MFC:只允许产生一个应用程序实例的具体实现

在MFC&#xff08;Microsoft Foundation Class&#xff09;应用程序中&#xff0c;如果你想限制只允许产生一个应用程序实例&#xff0c;通常会使用互斥体&#xff08;Mutex&#xff09;来实现。这可以确保如果用户尝试启动第二个实例时&#xff0c;它会被阻止或将焦点返回到已…...

深入理解TCP/IP协议中的三次握手

&#x1f44d; 个人网站&#xff1a;【洛秋资源小站】 深入理解TCP/IP协议中的三次握手 在计算机网络中&#xff0c;TCP/IP协议是通信的基石。理解TCP/IP协议中的三次握手是掌握网络通信的关键步骤之一。本文将详细解释TCP/IP协议中的三次握手过程&#xff0c;探讨其工作原理&…...

【React】事件绑定、React组件、useState、基础样式

React 教程 目录 事件绑定 1.1. 基础实现 1.2. 使用事件参数 1.3. 传递自定义参数 1.4. 同时传递事件对象和自定义参数 React 组件 2.1. 组件是什么 2.2. 组件基础使用 useState&#xff1a;状态管理 3.1. 基础使用 3.2. 状态的修改规则 3.3. 修改对象状态 基础样式 4.1. 行…...

x264、x265、libaom 编码对比实验

介绍 x264 是一个开源的高性能 H.264/MPEG-4 AVC 编码器,它以其优秀的压缩比和广泛的适用性而闻名。x265 是一种用于将视频流编码成 H.265/MPEG-H HEVC 压缩格式的免费软件库和应用程序,以其下一代压缩能力和卓越的质量而闻名 。作为 x264 的继任者,x265 支持 HEVC 的 Main、…...

c++网络编程实战——开发基于ftp协议的文件传输模块(二) 配置ftp服务与手动执行ftp命令

配置FTP服务 一.前言 博主的环境是阿里云服务器&#xff0c;操作系统版本为 ubuntu20.04,一下所有操作都基于以上环境下进行的操作&#xff0c;同时为了简化操作我将开放同一个云服务器的不同端口&#xff0c;让它同时充当服务端和客户端&#xff0c;大家如果想测试效果更好且…...

Sphinx 安装相关指令解释

安装指令 pip3 install sphinx-autobuildpip3 install sphinx_rtd_themepip3 install sphinx_markdown_tablepip3 install sphinx_markdown_tables pip3 install sphinx-autobuild 功能&#xff1a;安装 sphinx-autobuild 包。作用&#xff1a;sphinx-autobuild 是一个工具&am…...

npm下载包-更改默认缓存目录

npm&#xff08;Node Package Manager&#xff09;的缓存目录是npm用于存储已下载包的本地位置&#xff0c;以便在后续安装相同包时能够快速复用&#xff0c;从而节省时间和带宽。npm缓存目录的具体位置会根据操作系统的不同而有所差异。 Windows系统 在Windows系统中&#x…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...