ML.Net 学习之使用经过训练的模型进行预测
什么是ML.Net:(学习文档上摘的一段:ML.NET 文档 - 教程和 API 参考 | Microsoft Learn 【学习入口】)
它使你能够在联机或脱机场景中将机器学习添加到 .NET 应用程序中。 借助此功能,可以使用应用程序的可用数据进行自动预测。 机器学习应用程序利用数据中的模式来进行预测,而不需要进行显式编程。
ML.NET 的核心是机器学习模型 。 该模型指定将输入数据转换为预测所需的步骤。 借助 ML.NET,可以通过指定算法来训练自定义模型,也可以导入预训练的 TensorFlow 和 ONNX 模型。
拥有模型后,可以将其添加到应用程序中进行预测。
说明:我已经用.cli工具生成好模型了,现在需要用训练模型生成预测数据。我需要用多线程的方式来预测,查看文档后大概有以下几种预测方式
(1)单一预测,使用PredictionEngine
//定义的输入数据的类
ModelInput inputData = new ModelInput()
{
Stock_cd = @"s_600803",
Stock_subject = @"油气开采;甲醇;蜱虫;天然气;并购重组;沪港通概念;油价上调;海藻炼油;融资融券;转融券标的",
Stock_block = @"994392,992046",
Stati_date = @"2013/1/14",
IsNewStock = @"否",
Stock_capital = 9857851F,
Price = 11.922F,
Volume = 14950900F,
Orders = -1043.7F,
Transaction = -3330F,
};
//Create MLContext
MLContext mlContext = new MLContext();
// Load Trained Model StockHolderPrediction.mlnet是已经训练好的模型
string filepath = Path.Combine(Environment.CurrentDirectory, "StockHolderPrediction.mlnet");
DataViewSchema predictionPipelineSchema;
ITransformer predictionPipeline = mlContext.Model.Load(filepath, out predictionPipelineSchema);
PredictionEngine<ModelInput, ModelOutput> predictionEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(predictionPipeline);
ModelOutput prediction = predictionEngine.Predict(inputData);
PredictionEngine 不是线程安全。 此外,必须在应用程序中的每一处所需位置创建它的实例。 随着应用程序的增长,此过程可能会变得难以管理。为了提高性能和线程安全,请结合使用依赖项注入和 PredictionEnginePool 服务
(2)单一预测,使用PredictionEnginePool
ModelInput inputData = new ModelInput()
{
Stock_cd = @"s_600803",
Stock_subject = @"油气开采;甲醇;蜱虫;天然气;并购重组;沪港通概念;油价上调;海藻炼油;融资融券;转融券标的",
Stock_block = @"994392,992046",
Stati_date = @"2013/1/14",
IsNewStock = @"否",
Stock_capital = 9857851F,
Price = 11.922F,
Volume = 14950900F,
Orders = -1043.7F,
Transaction = -3330F,
};
//Make Prediction
ModelOutput prediction = _predictionEnginePool.Predict(modelName: "StockHolderPrediction", example: inputData);
说明:上面这句之前我是这样写的:ModelOutput prediction = _predictionEnginePool.Predict(inputData);一直报错:You need to configure a default, not named, model before you use this method.
网上资料少,为了找这问题花好长时间
(3)多个预测,使用PredictionEnginePool
List<ModelInput> inputDataList = new List<ModelInput>();
inputDataList.Add(new ModelInput()
{
Stock_cd = @"s_600803",
Stock_subject = @"油气开采;甲醇;蜱虫;天然气;并购重组;沪港通概念;油价上调;海藻炼油;融资融券;转融券标的",
Stock_block = @"994392,992046",
Stati_date = @"2013/1/14",
IsNewStock = @"否",
Stock_capital = 9857851F,
Price = 11.922F,
Volume = 14950900F,
Orders = -1043.7F,
Transaction = -3330F,
});
IEnumerable<ModelOutput> predictions = inputDataList.Select(input => _predictionEnginePool.Predict(modelName: "StockHolderPrediction", example: input));
foreach (ModelOutput model in predictions)
{
}
可以用这个方法,预测一组(多个)。
(4)多个预测采用,IDataView
List<ModelInput> inputDataList = new List<ModelInput>();
inputDataList.Add(new ModelInput()
{
Stock_cd = @"s_600803",
Stock_subject = @"油气开采;甲醇;蜱虫;天然气;并购重组;沪港通概念;油价上调;海藻炼油;融资融券;转融券标的",
Stock_block = @"994392,992046",
Stati_date = @"2013/1/14",
IsNewStock = @"否",
Stock_capital = 9857851F,
Price = 11.922F,
Volume = 14950900F,
Orders = -1043.7F,
Transaction = -3330F,
});
//Create MLContext
MLContext mlContext = new MLContext();
// Load Trained Model
string filepath = Path.Combine(Environment.CurrentDirectory, "StockHolderPrediction.mlnet");
DataViewSchema predictionPipelineSchema;
ITransformer predictionPipeline = mlContext.Model.Load(filepath, out predictionPipelineSchema);
// Predicted Data
IDataView inputDataView = mlContext.Data.LoadFromEnumerable(inputDataList);
IDataView predictions = predictionPipeline.Transform(inputDataView);
// Get Predictions
float[] scoreColumn = predictions.GetColumn<float>("Score").ToArray();
经测试,这几种方式都能预测出结果,下一步,我需要比较哪一种方法用在多线程中比较好。
说明:我创建的是一个ASP.NET Core Web 应用(visual studio 2022)
需要注入PredictionEnginePool
说明:本文是经过学习摸索后写的总结性文章,难免遗漏。主要是备忘。不喜勿喷!
相关文章:

ML.Net 学习之使用经过训练的模型进行预测
什么是ML.Net:(学习文档上摘的一段:ML.NET 文档 - 教程和 API 参考 | Microsoft Learn 【学习入口】) 它使你能够在联机或脱机场景中将机器学习添加到 .NET 应用程序中。 借助此功能,可以使用应用程序的可用数据进行自…...
为什么 centos 下使用 tree 命令看不见 .env 文件
CentOS 下使用 tree 命令看不到 .env 文件主要有两个可能的原因: 默认情况下,tree 命令不显示隐藏文件。在 Linux 系统中,以点(.)开头的文件或目录被视为隐藏文件。.env 文件就属于这种隐藏文件。 您可能没有安装 tree 命令。如果在 CentOS …...
数据库基础与性能概述及相关术语
在计算机科学领域,特别是数据库技术中,掌握与数据库性能相关的专业词汇对于数据库管理员、开发人员及数据分析师等专业人员来说至关重要。以下是一篇关于计算机必背单词——数据库性能相关的详细解析. 一、数据库基础与性能概述 数据库是计算机科学中的…...
docker基于外部缓存加速构建方案
开启外部缓存 http://your_apt_cacher_ng_server:3142 是一个示例 URL,表示需要设置的 apt-cacher-ng 代理服务器的地址。apt-cacher-ng 是一个本地代理服务器,可以缓存从官方 APT 仓库下载的软件包,从而加速后续的下载过程,并减…...

【C语言】 作业11 链表+实现函数封装
递归实现链表数据互换,纯不会,明天再说 1、链表实现以下功能 链表,创建链表,申请节点,判空,头插,遍历输出,通过位置查找节点,任意位置插入,头删,…...
【Ubuntu】Ubuntu20修改MAC地址
文章目录 一、临时修改MAC地址(重启后复原)二、永久修改MAC地址 场景:在做虚拟机复制时,复制完的两台虚拟机存在相同MAC,导致无法分别分配IP。 解决:修改一台虚拟机的MAC地址。 一、临时修改MAC地址&#…...

ClickHouse集成LDAP实现简单的用户认证
1.这里我的ldap安装的是docker版的 docker安装的化就yum就好了 sudo yum install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin sudo systemctl start docker 使用下面的命令验证sudo docker run hello-world docker pull osixia/openl…...
C语言-预处理详解
1.预处理符号 C语言中设置了一些预定义符号,可以直接使用,预定义符号是在预处理期间处理的。 __FILE__//代表当前进行编译的源文件 __LINE__//文件当前行号 __DATE__//文件当前日期 __TIME__//文件当前时间 __STDC__//如果编译器遵循ANSIC,…...

计算机网络-VLAN间通信(三层通信)模拟实现
目录 VLAN基础知识VLAN和普通LAN区别划分VLAN的原因 实现VLAN间的通信(三层通信)方案一:多臂路由方案二:单臂路由方案三:三层交换机 VLAN基础知识 VLAN(Virtual Local Area Network,虚拟局域网…...

【JAVA】数据类型及变量
🎉欢迎大家收看,请多多支持🌹 🥰关注小哇,和我一起成长🚀个人主页🚀 Java的数据类型 可以分为两类,基本数据类型和引用数据类型 基本数据类型有4类8种,4类分别是整型 浮…...

微软蓝屏事件暴露的网络安全问题
目录 1.概述 2.软件更新流程中的风险管理和质量控制机制 2.1.测试流程 2.2.风险管理策略 2.3.质量控制措施 2.4.小结 3.预防类似大规模故障的最佳方案或应急响应对策 3.1. 设计冗余系统 3.2. 实施灾难恢复计划 3.3. 建立高可用架构 3.4. 类似规模的紧急故障下的响应…...
11 - FFmpeg - 编码 AAC
Planar 模式是 ffmpeg内部存储模式,我们实际使用的音频文件都是Packed模式的。 FFmpeq解码不同格式的音频输出的音频采样格式不是一样。 其中AAC解码输出的数据为浮点型的 AV_SAMPLE_FMT_FLTP 格式,MP3 解码输出的数据为 AV_SAMPLE_FMT_S16P 格式(使用的…...

OS Copilot初体验的感受与心得
本文介绍体验操作系统智能助手OS Copilot后,个人的一些收获、体验等。 最近,抽空体验了阿里云的操作系统智能助手OS Copilot,在这里记录一下心得与收获。总体观之,从个人角度来说,感觉这个OS Copilot确实抓住了不少开发…...
Ajax学习笔记
文章目录标题 Ajax学习笔记axios使用axios请求拦截器axios响应拦截器优化axios响应结果 form-serialize插件图片上传HTTP协议请求报文相应报文接口文档 AJAX原理 - XMLHttpRequest使用XMLHttpRequestXMLHttpRequest - 查询参数查询字符串对象 XMLHttpRequest - 数据提交 事件循…...
医学深度学习与机器学习融合的随想
医学深度学习与机器学习融合的随想 近年来,深度学习(图像类)和机器学习在医学领域的应用取得了飞速发展,为医学影像分析、疾病诊断和预后预测等领域带来了革命性的变革。深度学习擅长从复杂数据中提取高层次特征,而机…...
坑人的macos tar 命令 (实际上是bsdtar)换用 gnu tar
周末 看着笔记本上好用的朗文当代高级词典(mac版)和其它两部词典,准备复制到黑苹果台式机上去。考虑到词典内容有太多小文件,普通复制传输太慢,毫无疑问用 tar 打包肯定快而且能保留原始文件的各种信息。命令如下: time tar czf …...

【SpringBoot3】全局异常处理
【SpringBoot3】全局异常处理 一、全局异常处理器step1:创建收入数字的页面step2:创建控制器,计算两个整数相除step3:创建自定义异常处理器step5:创建给用提示的页面step6:测试输入(10/0) 二、BeanValidato…...
vue-Treeselect
一、Node KeyTypeDescriptionid (required)Number | String用于标识树中的选项。其值在所有选项中必须是唯一的label (required)String用于显示选项childrennode[] | null声明一个分支节点。你可以: 1) 设置为由a组成的子选项数组。叶节点,b…...
【机器学习框架TensorFlow和PyTorch】基本使用指南
机器学习框架TensorFlow和PyTorch:基本使用指南 目录 引言TensorFlow概述 TensorFlow简介TensorFlow的基本使用 PyTorch概述 PyTorch简介PyTorch的基本使用 TensorFlow和PyTorch的对比结论 引言 随着深度学习的快速发展,机器学习框架在实际应用中起到…...
matlab 中的methods(Access = protected) 是什么意思
gpt版本 在 MATLAB 中,methods 是用于定义类方法的一部分。(Access protected) 是一种访问控制修饰符,它限制了方法的访问权限。具体来说,当你在类定义中使用 methods(Access protected) 时,你是在定义只有类本身及其子类可以访…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...