语言模型及数据集
一、定义
1、语言模型的目标是估计序列的联合概率,一个理想的语言模型就能够基于模型本身生成自然文本。
2、对一个文档(词元)序列进行建模, 假设在单词级别对文本数据进行词元化。
3、计数建模
(1)其中𝑛(𝑥)和𝑛(𝑥,𝑥′)分别是单个单词和连续单词对的出现次数
4、N元语法
5、用空间换时间:统计单词在数据集中的出现次数, 然后将其除以整个语料库中的单词总数。
6、齐普夫定律:词频以一种明确的方式迅速衰减。 将前几个单词作为例外消除后,剩余的所有单词大致遵循双对数坐标图上的一条直线。
二、构建自然语言统计
import random import torch from d2l import torch as d2ltokens = d2l.tokenize(d2l.read_time_machine()) # 因为每个文本行不一定是一个句子或一个段落,因此我们把所有文本行拼接到一起 corpus = [token for line in tokens for token in line] vocab = d2l.Vocab(corpus) vocab.token_freqs[:10]
1、N元语法
#一元 freqs = [freq for token, freq in vocab.token_freqs] #二元 bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])] bigram_vocab = d2l.Vocab(bigram_tokens) #三元 trigram_tokens = [triple for triple in zip(corpus[:-2], corpus[1:-1], corpus[2:])] trigram_vocab = d2l.Vocab(trigram_tokens)
2、随机采样
def seq_data_iter_random(corpus, batch_size, num_steps): #@save"""使用随机抽样生成一个小批量子序列"""# 随机对序列进行分区corpus = corpus[random.randint(0, num_steps - 1):]# 减去1,是因为我们需要考虑标签num_subseqs = (len(corpus) - 1) // num_steps# 长度为num_steps的子序列的起始索引initial_indices = list(range(0, num_subseqs * num_steps, num_steps))# 在随机抽样的迭代过程中,random.shuffle(initial_indices)def data(pos):# 返回从pos位置开始的长度为num_steps的序列return corpus[pos: pos + num_steps]#因为subseq有若干个batchenum_batches = num_subseqs // batch_sizefor i in range(0, batch_size * num_batches, batch_size):# 在这里,initial_indices包含子序列的随机起始索引initial_indices_per_batch = initial_indices[i: i + batch_size]#基于到目前为止我们看到的词元来预测下一个词元, 标签是移位了一个词元的原始序列X = [data(j) for j in initial_indices_per_batch]Y = [data(j + 1) for j in initial_indices_per_batch]yield torch.tensor(X), torch.tensor(Y)
3、顺序分区
def seq_data_iter_sequential(corpus, batch_size, num_steps): #@save"""使用顺序分区生成一个小批量子序列"""# 从随机偏移量开始划分序列offset = random.randint(0, num_steps)num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_sizeXs = torch.tensor(corpus[offset: offset + num_tokens])Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)num_batches = Xs.shape[1] // num_stepsfor i in range(0, num_steps * num_batches, num_steps):X = Xs[:, i: i + num_steps]Y = Ys[:, i: i + num_steps]yield X, Y
4、两个采样函数包装到一个类中
class SeqDataLoader: #@save"""加载序列数据的迭代器"""def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):if use_random_iter:self.data_iter_fn = d2l.seq_data_iter_randomelse:self.data_iter_fn = d2l.seq_data_iter_sequentialself.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)self.batch_size, self.num_steps = batch_size, num_stepsdef __iter__(self):return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)
5、同时返回数据迭代器和词表
def load_data_time_machine(batch_size, num_steps, #@saveuse_random_iter=False, max_tokens=10000):"""返回时光机器数据集的迭代器和词表"""data_iter = SeqDataLoader(batch_size, num_steps, use_random_iter, max_tokens)return data_iter, data_iter.vocab
三、总结
1、语言模型是自然语言处理的关键。
2、𝑛元语法通过截断相关性,为处理长序列提供了一种实用的模型。
3、长序列存在一个问题:它们很少出现或者从不出现。
4、齐普夫定律支配着单词的分布,这个分布不仅适用于一元语法,还适用于其他𝑛元语法。
5、读取长序列的主要方式是随机采样和顺序分区。在迭代过程中,后者可以保证来自两个相邻的小批量中的子序列在原始序列上也是相邻的。
相关文章:

语言模型及数据集
一、定义 1、语言模型的目标是估计序列的联合概率,一个理想的语言模型就能够基于模型本身生成自然文本。 2、对一个文档(词元)序列进行建模, 假设在单词级别对文本数据进行词元化。 3、计数建模 (1)其中…...

linux如何卸载python3.5
卸载: 1、卸载python3.5 sudo apt-get remove python3.5 2、卸载python3.5及其依赖 sudo apt-get remove --auto-remove python3.5 3、清除python3.5 sudo apt-get purge python3.5 或者 sudo apt-get purge --auto-remove python3.5...

【BUG】已解决:TypeError: expected string or bytes-like object
TypeError: expected string or bytes-like object 目录 TypeError: expected string or bytes-like object 【常见模块错误】 【解决方案】 常见原因及解决方法 示例代码 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰…...

在linux上面用drissionpage自动化遇到反爬?
目录 一、反爬内容1、案例12、案例2 二、后来发现的问题解决 一、反爬内容 1、案例1 反爬的响应文本返回如下:爬虫均能精准识别,测试链接:https://ziyuan.baidu.com/crawltools/index)非正常爬虫访问时:返回的压缩报文内容无法直接识别,可一定程度上保护站点信息安…...
vue3大事件管理系统 === 首页 layout 文章分类页面 -
目录 首页 layout 架子 [element-plus 菜单] 基本架子拆解 登录访问拦截 用户基本信息获取&渲染 退出功能 [element-plus 确认框] 文章分类页面 - [element-plus 表格] 基本架子 - PageContainer 文章分类渲染 封装API - 请求获取表格数据 el-table 表格动态渲染 …...

堆的基本实现
一、堆的概念 在提出堆的概念之前,首先要了解二叉树的基本概念 一颗二叉树是节点的有限集合,该集合: 1、或者为空; 2、或者由一个根节点加上两颗分别称为左子树和右子树的两颗子树构成; 堆就是一颗完全二叉树&…...

Ubuntu上编译多个版本的frida
准备工作 Ubuntu20(WSL) 略 安装依赖 sudo apt update sudo apt-get install build-essential git lib32stdc-9-dev libc6-dev-i386 -y nodejs 去官网[1]下载nodejs,版本的话我就选的20.15.1: tar -xf node-v20.15.1-linux-x64.tar.xz 下载源码 …...
概率论三大分布
目录 基本概念 卡方分布(χ分布): t分布: F分布: 延伸 卡方分布在哪些具体情况下最适合用于数据分析? t分布在大样本情况下的表现与正态分布相比如何? F分布在进行方差比较时与t分布的区…...
Spring系统学习-基于XML的声明式事务
基本概念 在Spring框架中,基于XML的事务管理是一种通过XML配置文件来管理事务的方式。Spring提供了强大的事务管理功能,可以与多种持久化技术(如JDBC、Hibernate、JPA等)结合使用。以下是如何在Spring中使用基于XML的事务管理的基…...
iOS中的MVVM设计模式
目录 前言 一、MVVM简介 二、MVVM的核心思想 三、MVVM的优势 四、MVVM在iOS中的实现 1. 创建Model 2. 创建ViewModel 3. 创建View 4. 主入口 总结 前言 随着iOS开发的发展,构建可维护和可扩展的代码架构变得至关重要。Model-View-ViewModel (MVVM) 是一种…...

ES中的数据类型学习之ARRAY
Arrays | Elasticsearch Guide [7.17] | Elastic 中文翻译 :Array Elasticsearch 5.4 中文文档 看云 Arrays In Elasticsearch, there is no dedicated array data type. Any field can contain zero or more values by default, however, all values in the a…...
vue网络请求
post网络请求 import axios from axios import {ElMessage, ElLoading} from "element-plus" import { nextTick } from "vue" import JSONbig from json-bigint import { userToken } from "/constants/Constant.js";const defaultConfig {bas…...

几何光学基本原理——费马原理和射线方程
在几何光学中,射线方程用于描述光在折射率不均匀的介质中传播的路径。折射率的变化会导致射线发生弯曲,射线方程正是用于计算这种弯曲路径的。 几何光学的基本原理 几何光学假设光在介质中沿直线传播,但在折射率变化的介质中,光的…...
OpenCV车牌识别技术详解
第一部分:图像预处理 车牌识别(License Plate Recognition,LPR)是计算机视觉领域的一个重要应用,它涉及到图像处理、模式识别等多个方面。OpenCV作为一个强大的计算机视觉库,提供了丰富的车牌识别相关功能…...
解决llama_index中使用Ollama出现timed out 问题
现象: File "~/anaconda3/envs/leo_py38/lib/python3.8/site-packages/httpx/_transports/default.py", line 86, in map_httpcore_exceptionsraise mapped_exc(message) from exc httpx.ReadTimeout: timed out代码: from llama_index.core …...

Python爬虫技术 第14节 HTML结构解析
HTML 结构解析是 Web 爬虫中的核心技能之一,它允许你从网页中提取所需的信息。Python 提供了几种流行的库来帮助进行 HTML 解析,其中最常用的是 BeautifulSoup 和 lxml。 1. 安装必要的库 首先,你需要安装 requests(用于发送 HTT…...

【vue3|第18期】Vue-Router路由的三种传参方式
日期:2024年7月17日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.408…...

ElasticSearch(六)— 全文检索
一、match系列查询 前面讲到的query中的查询,都是精准查询。可以理解成跟在关系型数据库中的查询类似。match系列的查询,是全文检索的查询。会通过分词进行评分,匹配,再返回搜索结果。 1.1 match 查询 "query": {&qu…...

Oracle核心进程详解并kill验证
Oracle核心进程详解并kill验证 文章目录 Oracle核心进程详解并kill验证一、说明二、核心进程详解2.1.PMON-进程监控进程2.2.SMON-系统监控进程2.3.DBWn-数据库块写入进程2.4. LGWR-日志写入器进程2.5. CKPT-检查点进程 三、Kill验证3.1.kill ckpt进程3.2.kill pmon进程3.3.kill…...

【BUG】已解决:SyntaxError:positional argument follows keyword argument
SyntaxError:positional argument follows keyword argument 目录 SyntaxError:positional argument follows keyword argument 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...