语言模型及数据集
一、定义
1、语言模型的目标是估计序列的联合概率,一个理想的语言模型就能够基于模型本身生成自然文本。
2、对一个文档(词元)序列进行建模, 假设在单词级别对文本数据进行词元化。
3、计数建模
(1)其中𝑛(𝑥)和𝑛(𝑥,𝑥′)分别是单个单词和连续单词对的出现次数
4、N元语法
5、用空间换时间:统计单词在数据集中的出现次数, 然后将其除以整个语料库中的单词总数。
6、齐普夫定律:词频以一种明确的方式迅速衰减。 将前几个单词作为例外消除后,剩余的所有单词大致遵循双对数坐标图上的一条直线。
二、构建自然语言统计
import random import torch from d2l import torch as d2ltokens = d2l.tokenize(d2l.read_time_machine()) # 因为每个文本行不一定是一个句子或一个段落,因此我们把所有文本行拼接到一起 corpus = [token for line in tokens for token in line] vocab = d2l.Vocab(corpus) vocab.token_freqs[:10]
1、N元语法
#一元 freqs = [freq for token, freq in vocab.token_freqs] #二元 bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])] bigram_vocab = d2l.Vocab(bigram_tokens) #三元 trigram_tokens = [triple for triple in zip(corpus[:-2], corpus[1:-1], corpus[2:])] trigram_vocab = d2l.Vocab(trigram_tokens)
2、随机采样
def seq_data_iter_random(corpus, batch_size, num_steps): #@save"""使用随机抽样生成一个小批量子序列"""# 随机对序列进行分区corpus = corpus[random.randint(0, num_steps - 1):]# 减去1,是因为我们需要考虑标签num_subseqs = (len(corpus) - 1) // num_steps# 长度为num_steps的子序列的起始索引initial_indices = list(range(0, num_subseqs * num_steps, num_steps))# 在随机抽样的迭代过程中,random.shuffle(initial_indices)def data(pos):# 返回从pos位置开始的长度为num_steps的序列return corpus[pos: pos + num_steps]#因为subseq有若干个batchenum_batches = num_subseqs // batch_sizefor i in range(0, batch_size * num_batches, batch_size):# 在这里,initial_indices包含子序列的随机起始索引initial_indices_per_batch = initial_indices[i: i + batch_size]#基于到目前为止我们看到的词元来预测下一个词元, 标签是移位了一个词元的原始序列X = [data(j) for j in initial_indices_per_batch]Y = [data(j + 1) for j in initial_indices_per_batch]yield torch.tensor(X), torch.tensor(Y)
3、顺序分区
def seq_data_iter_sequential(corpus, batch_size, num_steps): #@save"""使用顺序分区生成一个小批量子序列"""# 从随机偏移量开始划分序列offset = random.randint(0, num_steps)num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_sizeXs = torch.tensor(corpus[offset: offset + num_tokens])Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)num_batches = Xs.shape[1] // num_stepsfor i in range(0, num_steps * num_batches, num_steps):X = Xs[:, i: i + num_steps]Y = Ys[:, i: i + num_steps]yield X, Y
4、两个采样函数包装到一个类中
class SeqDataLoader: #@save"""加载序列数据的迭代器"""def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):if use_random_iter:self.data_iter_fn = d2l.seq_data_iter_randomelse:self.data_iter_fn = d2l.seq_data_iter_sequentialself.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)self.batch_size, self.num_steps = batch_size, num_stepsdef __iter__(self):return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)
5、同时返回数据迭代器和词表
def load_data_time_machine(batch_size, num_steps, #@saveuse_random_iter=False, max_tokens=10000):"""返回时光机器数据集的迭代器和词表"""data_iter = SeqDataLoader(batch_size, num_steps, use_random_iter, max_tokens)return data_iter, data_iter.vocab
三、总结
1、语言模型是自然语言处理的关键。
2、𝑛元语法通过截断相关性,为处理长序列提供了一种实用的模型。
3、长序列存在一个问题:它们很少出现或者从不出现。
4、齐普夫定律支配着单词的分布,这个分布不仅适用于一元语法,还适用于其他𝑛元语法。
5、读取长序列的主要方式是随机采样和顺序分区。在迭代过程中,后者可以保证来自两个相邻的小批量中的子序列在原始序列上也是相邻的。
相关文章:

语言模型及数据集
一、定义 1、语言模型的目标是估计序列的联合概率,一个理想的语言模型就能够基于模型本身生成自然文本。 2、对一个文档(词元)序列进行建模, 假设在单词级别对文本数据进行词元化。 3、计数建模 (1)其中…...

linux如何卸载python3.5
卸载: 1、卸载python3.5 sudo apt-get remove python3.5 2、卸载python3.5及其依赖 sudo apt-get remove --auto-remove python3.5 3、清除python3.5 sudo apt-get purge python3.5 或者 sudo apt-get purge --auto-remove python3.5...

【BUG】已解决:TypeError: expected string or bytes-like object
TypeError: expected string or bytes-like object 目录 TypeError: expected string or bytes-like object 【常见模块错误】 【解决方案】 常见原因及解决方法 示例代码 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰…...

在linux上面用drissionpage自动化遇到反爬?
目录 一、反爬内容1、案例12、案例2 二、后来发现的问题解决 一、反爬内容 1、案例1 反爬的响应文本返回如下:爬虫均能精准识别,测试链接:https://ziyuan.baidu.com/crawltools/index)非正常爬虫访问时:返回的压缩报文内容无法直接识别,可一定程度上保护站点信息安…...
vue3大事件管理系统 === 首页 layout 文章分类页面 -
目录 首页 layout 架子 [element-plus 菜单] 基本架子拆解 登录访问拦截 用户基本信息获取&渲染 退出功能 [element-plus 确认框] 文章分类页面 - [element-plus 表格] 基本架子 - PageContainer 文章分类渲染 封装API - 请求获取表格数据 el-table 表格动态渲染 …...

堆的基本实现
一、堆的概念 在提出堆的概念之前,首先要了解二叉树的基本概念 一颗二叉树是节点的有限集合,该集合: 1、或者为空; 2、或者由一个根节点加上两颗分别称为左子树和右子树的两颗子树构成; 堆就是一颗完全二叉树&…...

Ubuntu上编译多个版本的frida
准备工作 Ubuntu20(WSL) 略 安装依赖 sudo apt update sudo apt-get install build-essential git lib32stdc-9-dev libc6-dev-i386 -y nodejs 去官网[1]下载nodejs,版本的话我就选的20.15.1: tar -xf node-v20.15.1-linux-x64.tar.xz 下载源码 …...
概率论三大分布
目录 基本概念 卡方分布(χ分布): t分布: F分布: 延伸 卡方分布在哪些具体情况下最适合用于数据分析? t分布在大样本情况下的表现与正态分布相比如何? F分布在进行方差比较时与t分布的区…...
Spring系统学习-基于XML的声明式事务
基本概念 在Spring框架中,基于XML的事务管理是一种通过XML配置文件来管理事务的方式。Spring提供了强大的事务管理功能,可以与多种持久化技术(如JDBC、Hibernate、JPA等)结合使用。以下是如何在Spring中使用基于XML的事务管理的基…...
iOS中的MVVM设计模式
目录 前言 一、MVVM简介 二、MVVM的核心思想 三、MVVM的优势 四、MVVM在iOS中的实现 1. 创建Model 2. 创建ViewModel 3. 创建View 4. 主入口 总结 前言 随着iOS开发的发展,构建可维护和可扩展的代码架构变得至关重要。Model-View-ViewModel (MVVM) 是一种…...

ES中的数据类型学习之ARRAY
Arrays | Elasticsearch Guide [7.17] | Elastic 中文翻译 :Array Elasticsearch 5.4 中文文档 看云 Arrays In Elasticsearch, there is no dedicated array data type. Any field can contain zero or more values by default, however, all values in the a…...
vue网络请求
post网络请求 import axios from axios import {ElMessage, ElLoading} from "element-plus" import { nextTick } from "vue" import JSONbig from json-bigint import { userToken } from "/constants/Constant.js";const defaultConfig {bas…...

几何光学基本原理——费马原理和射线方程
在几何光学中,射线方程用于描述光在折射率不均匀的介质中传播的路径。折射率的变化会导致射线发生弯曲,射线方程正是用于计算这种弯曲路径的。 几何光学的基本原理 几何光学假设光在介质中沿直线传播,但在折射率变化的介质中,光的…...
OpenCV车牌识别技术详解
第一部分:图像预处理 车牌识别(License Plate Recognition,LPR)是计算机视觉领域的一个重要应用,它涉及到图像处理、模式识别等多个方面。OpenCV作为一个强大的计算机视觉库,提供了丰富的车牌识别相关功能…...
解决llama_index中使用Ollama出现timed out 问题
现象: File "~/anaconda3/envs/leo_py38/lib/python3.8/site-packages/httpx/_transports/default.py", line 86, in map_httpcore_exceptionsraise mapped_exc(message) from exc httpx.ReadTimeout: timed out代码: from llama_index.core …...

Python爬虫技术 第14节 HTML结构解析
HTML 结构解析是 Web 爬虫中的核心技能之一,它允许你从网页中提取所需的信息。Python 提供了几种流行的库来帮助进行 HTML 解析,其中最常用的是 BeautifulSoup 和 lxml。 1. 安装必要的库 首先,你需要安装 requests(用于发送 HTT…...

【vue3|第18期】Vue-Router路由的三种传参方式
日期:2024年7月17日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.408…...

ElasticSearch(六)— 全文检索
一、match系列查询 前面讲到的query中的查询,都是精准查询。可以理解成跟在关系型数据库中的查询类似。match系列的查询,是全文检索的查询。会通过分词进行评分,匹配,再返回搜索结果。 1.1 match 查询 "query": {&qu…...

Oracle核心进程详解并kill验证
Oracle核心进程详解并kill验证 文章目录 Oracle核心进程详解并kill验证一、说明二、核心进程详解2.1.PMON-进程监控进程2.2.SMON-系统监控进程2.3.DBWn-数据库块写入进程2.4. LGWR-日志写入器进程2.5. CKPT-检查点进程 三、Kill验证3.1.kill ckpt进程3.2.kill pmon进程3.3.kill…...

【BUG】已解决:SyntaxError:positional argument follows keyword argument
SyntaxError:positional argument follows keyword argument 目录 SyntaxError:positional argument follows keyword argument 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...