当前位置: 首页 > news >正文

Pytorch使用教学3-特殊张量的创建与类型转化

在这里插入图片描述

1 特殊张量的创建

numpy类似,PyTorch中的张量也有很多特殊创建的形式。

zeros:全0张量

# 形状为2行3列
torch.zeros([2, 3])
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])

ones:全1张量

# 形状为2行3列
torch.ones([2, 3])
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])

eye:单位矩阵

torch.eye(3)
# tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])

diag:对角矩阵

在PyTorch中,需要利用一维张量去创建对角矩阵。

torch.diag(torch.tensor([1,2,3,4,5]))
# tensor([[1, 0, 0, 0, 0],
#         [0, 2, 0, 0, 0],
#         [0, 0, 3, 0, 0],
#         [0, 0, 0, 4, 0],
#         [0, 0, 0, 0, 5]])

rand:服从0-1均匀分布的张量

torch.rand(2, 3)
# tensor([[0.2154, 0.7666, 0.7396],
#         [0.3063, 0.9024, 0.0047]])

randn:服从标准正态分布的张量

torch.randn(3, 3)
# tensor([[ 1.2200, -1.0587,  1.0716],
#        [-1.2465, -0.3391,  1.2131],
#        [ 0.7201,  1.2034, -1.0660]])

normal服从指定正态分布的张量

# 均值为2,标准差为3的张量,形状为2行2列
torch.normal(2, 3, size = (2, 2))
# tensor([[9.0815, 0.9216],
#         [0.9856, 4.2866]])

randint整数随机采用

torch.randint(1, 10, size = [2, 4])
# tensor([[1, 8, 2, 3],
#         [5, 3, 5, 7]])

arange/linspace:生成数列

# 从1-5,左闭右开
torch.arange(5) 
# tensor([0, 1, 2, 3, 4])# 从1-5,左右都包含,等距取3个数
torch.linspace(1, 5, 3)
# tensor([1., 3., 5.])

empty:生成未初始化的指定形状矩阵

它生成的数近似于0,但不为0

torch.empty(2, 3)
# tensor([[-2.1193e-17,  4.5602e-41,  3.0720e-09],
#         [ 3.0630e-41,  0.0000e+00,  0.0000e+00]])

full:根据指定形状,填充指定数值

# 填充形状为2行4列,填充数值为2
torch.full([2, 4], 2)
# tensor([[2, 2, 2, 2],
#         [2, 2, 2, 2]])

2 _like后缀的用法

创建指定形状的数组,在上述函数后面加上_like即可。比如现在我们有一个张量t,形状为2行3列:

t = torch.tensor([[1, 2, 3], [4, 5, 6]])

我们想创建一个1-100随机数的张量,形状与张量t相同:

torch.randint_like(t, 1, 100)
# tensor([[57, 67, 77],
#         [76, 45, 31]])

上述函数都有_like方法,需要注意的是该方法转化需要注意转化前后数据类型一致的问题,若数据类型不一致,则会报错:

# randn为float型,而t为int型
# 转换数据类型不一致,就会报错
torch.randn_like(t)
# RuntimeError

3 张量与其他数据类型的转换

张量、数组和列表是较为相似的三种类型对象,在实际操作过程中,经常会涉及三种对象的相互转化。

3.1 .numpy()/np.array():张量转化为数组

# 使用.numpy()
t.numpy()
# array([1, 2, 3])# 使用np.array()
np.array(t)
# array([1, 2, 3])

3.2 tolist()/list():张量转化为列表

# 使用tolist()
t = torch.tensor([1, 2, 3])
t.tolist()
# [1, 2, 3]

需要注意的是,在使用list()时,此时转化的列表是由一个个零维张量构成的列表,而非张量的数值构成的列表。可理解为1维张量是由0维张量组成的。

# 使用list(),结果是零维张量构成的列表,为标量
list(t)
# [tensor(1), tensor(2), tensor(3)]

3.3 .item():标量转化为数值

在很多情况下,我们需要将最终计算的结果张量转为单独的数值进行输出。

n = torch.tensor(1)
print(n)
# tensor(1)# 使用.item()方法将标量转为python中的数值
n.item()
# 1

4 张量的深拷贝

与python中其他对象类型一样,等号赋值操作实际上是浅拷贝,需要进行深拷贝,则需要使用clone方法。

4.1 浅拷贝

t1 = torch.arange(10)
t2 = t1
t2[1] = 10
print(t1)
# t1也被改变了
# tensor([ 0, 10,  2,  3,  4,  5,  6,  7,  8,  9])
print(t2)
# tensor([ 0, 10,  2,  3,  4,  5,  6,  7,  8,  9])

4.2 clone()深拷贝

t1 = torch.arange(10)
t2 = t1.clone()
t2[1] = 10# t1并没有被改变
print(t1)
# tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# t2的第二个元素变成了10
print(t2)
# tensor([ 0, 10,  2,  3,  4,  5,  6,  7,  8,  9])

Pytorch张量操作大全:

Pytorch使用教学1-Tensor的创建
Pytorch使用教学2-Tensor的维度
Pytorch使用教学3-特殊张量的创建与类型转化
Pytorch使用教学4-张量的索引
Pytorch使用教学5-视图view与reshape的区别
Pytorch使用教学6-张量的分割与合并
Pytorch使用教学7-张量的广播
Pytorch使用教学8-张量的科学运算
Pytorch使用教学9-张量的线性代数运算
Pytorch使用教学10-张量操作方法大总结

有关Pytorch建模相关的AI干货请扫码关注公众号「AI有温度」阅读获取
在这里插入图片描述

相关文章:

Pytorch使用教学3-特殊张量的创建与类型转化

1 特殊张量的创建 与numpy类似,PyTorch中的张量也有很多特殊创建的形式。 zeros:全0张量 # 形状为2行3列 torch.zeros([2, 3]) # tensor([[0., 0., 0.], # [0., 0., 0.]])ones:全1张量 # 形状为2行3列 torch.ones([2, 3]) # tensor([[1., 1., 1.], # …...

【日记】办个护照不至于有这种刑事罪犯一样的待遇吧……(737 字)

正文 暴晒,中午出去骑共享单车,座垫都不敢坐。 至于为什么,中午觉都不睡跑出去,是因为今天他们办承兑汇票的业务,搞了一天,中午不休息,说可能还会用到我的指纹,让我 on call。我心想…...

【矩阵微分】在不涉及张量的前提下计算矩阵对向量的导数并写出二阶泰勒展开

本篇内容摘自CMU 16-745最优控制的第10讲 “Nonlinear Trajectory Optimization”。 如何在不涉及张量运算的前提下,计算矩阵对向量的导数并写出二阶泰勒展开 在多维微积分中,计算矩阵对向量的导数和二阶泰勒展开是一项重要的任务。本文将介绍如何在不涉…...

数据结构之判断平衡二叉树详解与示例(C,C++)

文章目录 AVL树定义节点定义计算高度获取平衡因子判断是否为平衡二叉树完整示例代码结论 在计算机科学中,二叉树是一种非常重要的数据结构。它们被广泛用于多种算法中,如排序、查找等。然而,普通的二叉树在极端情况下可能退化成链表&#xff…...

深入解析仓颉编程语言:函数式编程的核心特性

摘要 仓颉编程语言以其独特的语法和功能,为开发者提供了强大的编程工具。本文将深入探讨仓颉语言中的嵌套函数、Lambda 表达式和闭包等函数式编程的核心特性,帮助开发者更好地理解和利用这些工具。 引言 在现代编程语言中,函数式编程范式越…...

springboot惠农服务平台-计算机毕业设计源码50601

目录 1 绪论 1.1 研究背景 1.2研究意义 1.3论文结构与章节安排 2 惠农服务平台app 系统分析 2.1 可行性分析 2.2 系统功能分析 2.3 系统用例分析 2.4 系统流程分析 2.5本章小结 3 惠农服务平台app 总体设计 3.1 系统功能模块设计 3.2 数据库设计 表access_token (…...

Lua脚本简单理解

目录 1.安装 2.语法 2.1Lua数据类型 2.2变量 2.3lua循环 2.4流程控制 2.5函数 2.6运算符 2.7关系运算符 3.lua脚本在redis中的使用 3.1lua脚本再redis简单编写 3.2普通锁Lua脚本 3.3可重入锁lua脚本 1.安装 centos安装 安装指令: yum -y update yum i…...

AutoSAR自适应平台架构总览--AP的初认识

AutoSAR自适应平台架构总览:AP 基础设施层(Foundation Layer)核心操作系统(Core OS)通信管理(Communication Management) 服务层(Services Layer)诊断服务(Diagnostics S…...

GPT-4o Mini:探索最具成本效益的小模型在软件开发中的应用

随着人工智能技术的迅猛发展,自然语言处理(NLP)领域也取得了显著的进步。OpenAI 最新发布的 GPT-4o Mini 模型,以其卓越的性能和极具竞争力的价格,成为了广大开发者关注的焦点。作为一名长期关注人工智能及其在软件开发…...

{Spring Boot 原理篇} Spring Boot自动装配原理

SpringBootApplication 1,Spring Boot 应用启动,SpringBootApplication标注的类就是启动类,它去实现配置类中的Bean的自动装配 SpringBootApplication public class SpringbootRedis01Application {public static void main(String[] args)…...

QEMU源码全解析 —— CPU虚拟化(10)

接前一篇文章: 本文内容参考: 《趣谈Linux操作系统》 —— 刘超,极客时间 《QEMU/KVM》源码解析与应用 —— 李强,机械工业出版社 《深度探索Linux系统虚拟化原理与实现》—— 王柏生 谢广军, 机械工业出版社 特此致谢! 二、x86架构CPU虚拟化 3. VMX 上一回讲解了支…...

46、PHP实现矩阵中的路径

题目: PHP实现矩阵中的路径 描述: 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。 路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向…...

c++笔记2

目录 2.2 栈底(bottom) } 大数乘大数 节点:包含一个数据元素及若干指向子树分支的信息 。 节点的度:一个节点拥有子树的数目称为节点的度 。 叶子节点:也称为终端节点,没有子树的节点或者度为零的节点…...

通过Lua脚本手写redis分布式锁

1、手写 Redis 分布式锁,包括上锁、解锁、自动续期。 此功能实现采用 Lua脚本实现,Lua脚本可以保证原子性。 setnx可以实现分布式锁,但是无法实现可重入锁,所以用hset来代替setnx实现可重入的分布式锁。 -- lock if redis.call…...

解析银行个人征信系统

银行个人征信系统,也被称为个人信用信息基础数据库或金融信用信息基础数据库,是我国社会信用体系的重要基础设施。该系统由中国人民银行组织国内相关金融机构建立,旨在依法采集、整理、保存、加工自然人(法人)及其他组…...

AttributeError: ‘list‘ object has no attribute ‘text‘

AttributeError: ‘list‘ object has no attribute ‘text‘ 目录 AttributeError: ‘list‘ object has no attribute ‘text‘ 【常见模块错误】 【解决方案】 示例代码 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英…...

Codeforces Round 874 (Div. 3)(A~D题)

A. Musical Puzzle 思路: 用最少的长度为2的字符串按一定规则拼出s。规则是&#xff1a;前一个字符串的尾与后一个字符串的首相同。统计s中长度为2的不同字符串数量。 代码: #include<bits/stdc.h> #include <unordered_map> using namespace std; #define N 20…...

[Python][基础语法]详细讲解

目录 1.顺序语句2.条件语句3.缩进和代码块4.空语句 pass5.循环语句1.while2.for3.continue4.break ∞.积累 1.顺序语句 默认情况下&#xff0c;Python的代码执行顺序是按照从上到下的顺序&#xff0c;依次执行# 输出结果&#xff1a;"123" print("1") pri…...

Layui---输入事件

输入实时监听 //监听表单单选框复选框选择 form.on(radio, function (data) {console.log(data.value); //得到被选中的值 });//监听表单下拉菜单选择form.on(select, function (data) //监听表单下拉菜单选择form.on(select, function (data) ​ //监听表单复选框选择form.…...

甄选范文“论软件测试中缺陷管理及其应用”软考高级论文,系统架构设计师论文

论文真题 软件缺陷指的是计算机软件或程序中存在的某种破坏正常运行能力的问题、错误,或者隐藏的功能缺陷。缺陷的存在会导致软件产品在某种程度上不能满足用户的需要。在目前的软件开发过程中,缺陷是不可避免的。软件测试是发现缺陷的主要手段,其核心目标就是尽可能多地找…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...