当前位置: 首页 > news >正文

sklearn详细基础教程(科普篇)

Scikit-learn(简称sklearn)是Python中一个强大且易于使用的机器学习库,它基于NumPy、SciPy和matplotlib等Python库构建,提供了丰富的工具集,包括数据预处理、特征选择、模型训练、评估和预测等功能。以下是sklearn的详细基础教程:

一、sklearn简介

sklearn是一个开源的机器学习库,它支持监督学习和无监督学习算法,包括分类、回归、聚类和降维等多种机器学习算法。sklearn的易用性体现在其简洁的API接口,便于快速上手和使用,同时它还具有良好的文档支持和大量的示例代码,便于学习和参考。

二、安装sklearn

sklearn的安装非常简单,可以通过pip或conda进行安装。使用pip安装的命令如下:

pip install scikit-learn

如果使用conda环境,可以使用以下命令:

conda install scikit-learn

安装完成后,可以通过在Python环境中导入scikit-learn并打印其版本来验证是否安装成功:

import sklearn
print(sklearn.__version__)

三、数据预处理

数据预处理是机器学习的第一步,也是非常关键的一步。sklearn提供了一系列的数据预处理工具,包括数据清洗、特征缩放、特征编码等。

  1. 数据清洗:处理缺失值、异常值和重复值等。

    • 使用SimpleImputer处理缺失值,例如用平均值、中位数或众数填充。
    • 检查并删除或处理异常值和重复值。
  2. 特征缩放:将特征数据缩放到相同的尺度上,以提高模型的训练效果和稳定性。

    • StandardScaler:将特征值缩放到均值为0,方差为1的分布。
    • MinMaxScaler:将特征数据缩放到一个指定的范围(通常是0到1)。
    • MaxAbsScaler:将每个特征缩放到[-1, 1]的范围内。
    • RobustScaler:使用中位数和四分位数范围来缩放特征,适合有离群点的数据集。
    • Normalizer:将每个样本缩放到单位范数,即使得每个样本的L1或L2范数为1。
  3. 特征编码:将分类数据转换为数值形式,以便机器学习模型处理。

    • OneHotEncoder:进行独热编码。
    • LabelEncoder:对目标变量进行编码。
  4. 特征选择和降维:选择重要的特征或降低数据的维度,以提高模型的效率和准确性。

    • 使用VarianceThreshold删除方差低于阈值的特征。
    • 使用SelectKBest选择与目标变量相关性最高的K个特征。
    • 使用PCA(主成分分析)进行降维。

四、常用模型介绍与应用

sklearn提供了多种机器学习算法,包括线性回归、逻辑回归、决策树、支持向量机、K近邻算法、随机森林等。

  1. 线性回归:用于预测连续型目标变量。
  2. 逻辑回归:常用于分类问题,尤其是二分类问题。
  3. 决策树:一种非参数的监督学习方法,可以用于分类和回归。
  4. 支持向量机(SVM):一种用于分类和回归的监督学习模型。
  5. K近邻算法(KNN):基于实例的学习方法,通过测量不同数据点之间的距离进行分类或回归。
  6. 随机森林:通过构建多个决策树来提高分类或回归的准确性和稳定性。

五、模型评估与调优

模型评估是机器学习过程中的重要环节,用于评估模型的性能。sklearn提供了多种评估指标和工具,如准确率、召回率、F1分数、交叉验证、网格搜索等。

  1. 交叉验证:将数据集分为多个部分,分别进行训练和测试,以评估模型的稳定性和泛化能力。
  2. 网格搜索:通过穷举搜索的方式,遍历给定的参数组合,找到最优的模型参数。
  3. 评估指标:如准确率、召回率、F1分数等,用于量化模型的性能。

六、实战案例

sklearn自带了一些用于演示和测试的数据集,如鸢尾花数据集(Iris)、波士顿房价数据集等。通过加载这些数据集,并使用sklearn提供的算法和工具进行数据预处理、模型训练和评估,可以加深对sklearn的理解和应用。

七、总结

sklearn是Python中一个非常强大的机器学习库,它提供了丰富的工具集和算法支持,使得机器学习变得更加简单和高效。通过掌握sklearn的基本用法和算法细节,可以显著提升机器学习项目的效率和性能。

相关文章:

sklearn详细基础教程(科普篇)

Scikit-learn(简称sklearn)是Python中一个强大且易于使用的机器学习库,它基于NumPy、SciPy和matplotlib等Python库构建,提供了丰富的工具集,包括数据预处理、特征选择、模型训练、评估和预测等功能。以下是sklearn的详…...

el-table列的显示与隐藏

需求:实现 表字段的显示与隐藏。效果图 代码实现 写在前面 首先 我部分字段有自定义的排序逻辑,和默认值或者 数据的计算 所以是不能简单的使用 v-for 循环column 。然后 我需要默认展示一部分字段,并且 当表无数据时 提示不能 显示隐藏 …...

使用命令快速删除项目中的node_modules

描述 直接调用了系统自带的命令行工具,无需额外安装任何第三方库或工具。 同时,这些命令经过优化,能够快速处理大量文件,从而实现快速删除。 步骤 1、进入项目文件夹; 2、如果是Mac/Linux 环境下,执行&a…...

leetCode15三数之和(双指针)

目录 1、题目 2、思路 3、代码 4、总结 1、题目 给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为…...

数据挖掘-数据预处理

来自🥬🐶程序员 Truraly | 田园 的博客,最新文章首发于:田园幻想乡 | 原文链接 | github (欢迎关注) 文章目录 3.3.1 数据的中心趋势平均数和加权平均数众数,中位数和均值描述数据的离散程度 &a…...

【调试笔记-20240723-Linux-gitee 仓库同步 github 仓库,并保持所有访问链接调整为指向 gitee 仓库的 URL】

调试笔记-系列文章目录 调试笔记-20240723-Linux-gitee 仓库同步 github 仓库,并保持所有访问链接调整为指向 gitee 仓库的 URL 文章目录 调试笔记-系列文章目录调试笔记-20240723-Linux-gitee 仓库同步 github 仓库,并保持所有访问链接调整为指向 gite…...

《GPT-4o mini:开启开发与创新的新纪元》

在科技发展的快速进程中,OpenAI 推出的 GPT-4o mini 模型如同一阵春风,给开发者们带来了新的希望和机遇。它以其卓越的性能和极具吸引力的价格,成为了行业内热议的焦点。 当我首次听闻 GPT-4o mini 的消息时,内心充满了好奇与期待…...

生成树协议配置与分析

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 一、相关知识 1、生成树协议简介 生成树协议(STP)是一种避免数据链路层逻辑环路的机制,它通过信息交互识别环路并…...

Golang | Leetcode Golang题解之第287题寻找重复数

题目: 题解: func findDuplicate(nums []int) int {slow, fast : 0, 0for slow, fast nums[slow], nums[nums[fast]]; slow ! fast; slow, fast nums[slow], nums[nums[fast]] { }slow 0for slow ! fast {slow nums[slow]fast nums[fast]}return s…...

【音视频SDL2入门】创建第一个窗口

文章目录 前言创建窗口的流程需要使用的函数1. 初始化 SDL 库2. 创建 SDL 窗口3. 获取与窗口关联的表面SDL_FillRect 函数介绍4. 更新窗口表面5. 延迟一定时间6. 销毁窗口并退出 SDL 库示例代码总结 前言 SDL2(Simple DirectMedia Layer)是一个跨平台的…...

《置身事内:中国政府与经济发展》生活过得好一点,比大多数宏伟更宏伟

《置身事内:中国政府与经济发展》生活过得好一点,比大多数宏伟更宏伟 兰小欢,复旦大学中国社会主义市场经济研究中心、经济学院副教授,上海国际金融与经济研究院研究员。美国弗吉尼亚大学经济学博士。 上海人民出版社 文章目录 《…...

MongoDB教程(十八):MongoDB MapReduce

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 文章目录 引言一、MapRed…...

HTML前端面试题之<iframe>标签

面试题:iframe 标签的作用是什么?有哪些优缺点 ? 讲真,刷这道面试题之前我根本没有接触过iframe,网课没讲过,项目实战没用过,但却在面试题里出现了!好吧,我只能说:前端路漫漫&…...

Docker-Compose实现MySQL之主从复制

1. 主服务器(IP:192.168.186.77) 1.1 docker-compose.yml services:mysql-master:image: mysql:latest # 使用最新版本的 MySQL 镜像container_name: mysql-master # 容器的名称environment:MYSQL_ROOT_PASSWORD: 123456 # MySQL root 用户的密码MYSQL_DATABASE: masterd…...

jetson显卡没有加速,而是在用cpu推理?

jetson的库,特别是使用显卡的库,大多需要单独安装 大概率是重装了pytorch,可以使用jetson官网的pytorch! 下面是官网的链接 PyTorch for Jetson - Announcements - NVIDIA Developer Forums 安装完成之后先使用命令查看是否安…...

Linux下如何安装配置Fail2ban防护工具

Fail2ban是一款在Linux服务器上用于保护系统免受恶意攻击的防护工具。它通过监视系统日志,检测到多次失败的登录尝试或其他恶意行为后,会自动将攻击源的IP地址加入防火墙的黑名单,从而阻止攻击者进一步访问服务器。本文将介绍如何在Linux系统…...

js的深浅拷贝

深浅拷贝是编程中对数据复制的两种不同方式,它们在处理对象和数组等复合数据结构时尤为重要。下面将详细解释这两种拷贝方式。 浅拷贝(Shallow Copy) 浅拷贝创建了原始对象的一个新实例,但这个新实例的属性只是原始对象属性的引…...

实验八: 彩色图像处理

目录 一、实验目的 二、实验原理 1. 常见彩色图像格式 2. 伪彩色图像 3. 彩色图像滤波 三、实验内容 四、源程序和结果 (1) 主程序(matlab (2) 函数FalseRgbTransf (3) 函数hsi2rgb (4) 函数rgb2hsi (5) 函数GrayscaleFilter (6) 函数RgbFilter 五、结果分析 1. …...

Python酷库之旅-第三方库Pandas(048)

目录 一、用法精讲 171、pandas.Series.nlargest方法 171-1、语法 171-2、参数 171-3、功能 171-4、返回值 171-5、说明 171-6、用法 171-6-1、数据准备 171-6-2、代码示例 171-6-3、结果输出 172、pandas.Series.nsmallest方法 172-1、语法 172-2、参数 172-3、…...

springboot爱宠屋宠物商店管理系统-计算机毕业设计源码52726

目录 摘要 1 绪论 1.1 选题背景与意义 1.2国内外研究现状 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1系统开发流程 2.2.2 用户登录流程 2.2.3 系统操作流程 2.2.4 添加信息流程 2.2.5 修改信息流程 2.2.6 删除信息流程 2.3 系统功能…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...