transformers进行学习率调整lr_scheduler(warmup)
一、get_scheduler实现warmup
1、warmup基本思想
Warmup(预热)是深度学习训练中的一种技巧,旨在逐步增加学习率以稳定训练过程,特别是在训练的早期阶段。它主要用于防止在训练初期因学习率过大导致的模型参数剧烈波动或不稳定。预热阶段通常是指在训练开始时,通过多个步长逐步将学习率从一个较低的值增加到目标值(通常是预定义的最大学习率)。
2、warmup基本实现
from transformers import get_schedulerscheduler = get_scheduler(name="cosine", # 可以选择 'linear', 'cosine', 'polynomial', 'constant', 'constant_with_warmup'optimizer=optimizer,num_warmup_steps=100, # 预热步数num_training_steps=num_training_steps # 总的训练步数
)#linear:线性学习率下降
#cosine:余弦退火
#polynomial:多项式衰减
#constant:常数学习率
#constant_with_warmup:预热后保持常数# 上述代码等价于
from transformers import get_cosine_scheduler_with_warmupscheduler = get_cosine_scheduler_with_warmup(optimizer=optimizer,num_warmup_steps=100, # 预热步数num_training_steps=num_training_steps # 总的训练步数
)# 同理等价于linear, polynomial, constant分别等价于
from transformers import (get_constant_schedule, get_polynomial_decay_schedule_with_warmup, get_linear_schedule_with_warmup)
二、各种warmup策略学习率变化规律
1、get_constant_schedule学习率变化规律
2、get_cosine_schedule_with_warmup学习率变化规律
3、get_cosine_with_hard_restarts_schedule_with_warmup学习率变化规律
4、get_linear_schedule_with_warmup学习率变化规律
5、get_polynomial_decay_schedule_with_warmup学习率变化规律(power=2, power=1类似于linear)
6、注意事项
- 如果网络中不同框架采用不同的学习率,上述的warmup策略仍然有效(如图二、5中所示)
- 给schduler设置的number_training_steps一定要和训练过程相匹配,如下所示。
7、可视化学习率过程
import matplotlib.pyplot as plt
from transformers import get_scheduler
from torch.optim import AdamW
import torch
import math# 定义一些超参数learning_rate = 1e-3 # 初始学习率# 假设有一个模型
model = torch.nn.Linear(10, 2)# 获得训练总的步数
epochs = 50
batch_size = 32
#train_loader = ***
#num_train_loader = len(train_loader)
num_train_loader = 1235num_training_steps = epochs * math.ceil(num_train_loader/batch_size) # 总的训练步数# 定义优化器
optimizer = AdamW(model.parameters(), lr=learning_rate)# 创建学习率调度器
scheduler = get_scheduler(name="cosine", # 可以选择 'linear', 'cosine', 'polynomial', 'constant', 'constant_with_warmup'optimizer=optimizer,num_warmup_steps=100, # 预热步数num_training_steps=num_training_steps # 总的训练步数
)# 存储每一步的学习率
learning_rates = []# for step in range(num_training_steps):
# optimizer.step()
# scheduler.step()
# learning_rates.append(optimizer.param_groups[0]['lr'])for epoch in range(epochs):# for batch in train_loader:for step in range(0, num_train_loader, batch_size):optimizer.zero_grad()# loss.backward()optimizer.step()scheduler.step()learning_rates.append(optimizer.param_groups[0]['lr'])# 绘制学习率曲线
plt.plot(learning_rates)
plt.xlabel("Training Steps")
plt.ylabel("Learning Rate")
plt.title("Learning Rate Schedule")
plt.show()
实验结果:
相关文章:

transformers进行学习率调整lr_scheduler(warmup)
一、get_scheduler实现warmup 1、warmup基本思想 Warmup(预热)是深度学习训练中的一种技巧,旨在逐步增加学习率以稳定训练过程,特别是在训练的早期阶段。它主要用于防止在训练初期因学习率过大导致的模型参数剧烈波动或不稳定。…...

智能优化算法之灰狼优化算法(GWO)
智能优化算法是一类基于自然界中生物、物理或社会现象的优化技术。这些算法通过模拟自然界中的一些智能行为,如遗传学、蚁群觅食、粒子群体运动等,来解决复杂的优化问题。智能优化算法广泛应用于各种工程和科学领域,因其具有全局搜索能力、鲁…...

昇思25天学习打卡营第17天|计算机视觉
昇思25天学习打卡营第17天 文章目录 昇思25天学习打卡营第17天ShuffleNet图像分类ShuffleNet网络介绍模型架构Pointwise Group ConvolutionChannel ShuffleShuffleNet模块构建ShuffleNet网络 模型训练和评估训练集准备与加载模型训练模型评估模型预测 打卡记录 ShuffleNet图像分…...
Windows图形界面(GUI)-MFC-C/C++ - 键鼠操作
公开视频 -> 链接点击跳转公开课程博客首页 -> 链接点击跳转博客主页 目录 MFC鼠标 派发流程 鼠标消息(客户区) 鼠标消息(非客户) 坐标处理 客户区 非客户 坐标转换 示例代码 MFC键盘 击键消息 虚拟键代码 键状态 MFC鼠标 派发流程 消息捕获&#…...
Angular 18.2.0 的新功能增强和创新
一.Angular 增强功能 Angular 是一个以支持开发强大的 Web 应用程序而闻名的平台,最近发布了 18.2.0 版本。此更新带来了许多新功能和改进,进一步增强了其功能和开发人员体验。在本文中,我们将深入探讨 Angular 18.2.0 为开发人员社区提供的…...

matlab 小数取余 rem 和 mod有 bug
目录 前言Matlab取余函数1 mod 函数1.1 命令行输入1.2 命令行输出 2 rem 函数2.1 命令行输入2.2 命令行输出 分析原因注意 前言 在 Matlab 代码中mod(0.11, 0.1) < 0.01 判断为真,mod(1.11, 0.1) < 0.01判断为假,导致出现意料外的结果。 结果发现…...
Avalonia中的数据模板
文章目录 1. 介绍和概述什么是数据模板:数据模板的用途:2. 定义数据模板在XAML中定义数据模板:在代码中定义数据模板:3. 使用数据模板在控件中使用数据模板:数据模板选择器:定义数据模板选择器:在XAML中使用数据模板选择器:4. 复杂数据模板使用嵌套数据模板:使用模板绑…...
Sqlmap中文使用手册 - Techniques模块参数使用
目录 1. Techniques模块的帮助文档2. 各个参数的介绍2.1 --techniqueTECH2.2 --time-secTIMESEC2.3 --union-colsUCOLS2.4 --union-charUCHAR2.5 --union-fromUFROM2.6 --dns-domainDNS2.7 --second-urlSEC2.8 --second-reqSEC 1. Techniques模块的帮助文档 Techniques:These o…...

科普文:kubernets原理
kubernetes 已经成为容器编排领域的王者,它是基于容器的集群编排引擎,具备扩展集群、滚动升级回滚、弹性伸缩、自动治愈、服务发现等多种特性能力。 本文将带着大家快速了解 kubernetes ,了解我们谈论 kubernetes 都是在谈论什么。 一、背…...
GO-学习-02-常量
常量是不变的 const package main import "fmt"func main() {//常量定义时必须赋值const pi 3.1415926const e 2.718//一次声明多个常量const(a 1b 2c "ihan")const(n1 100n2n3)//n2,n3也是100 同时声明多个常量时,如果省略了值则表示和…...
Vue系列面试题
大家好,我是有用就扩散,有用就点赞。 1.Vue中组件间有哪些通信方式? 父子组件通信: (1)props | $emit (接收父组件数据 | 传数据给父组件) (2)ref | $refs&a…...

等级保护 总结2
网络安全等级保护解决方案的主打产品: HiSec Insight安全态势感知系统、 FireHunter6000沙箱、 SecoManager安全控制器、 HiSecEngine USG系列防火墙和HiSecEngine AntiDDoS防御系统。 华为HiSec Insight安全态势感知系统是基于商用大数据平台FusionInsight的A…...

关于Redis(热点数据缓存,分布式锁,缓存安全(穿透,击穿,雪崩));
热点数据缓存: 为了把一些经常访问的数据,放入缓存中以减少对数据库的访问频率。从而减少数据库的压力,提高程序的性能。【内存中存储】成为缓存; 缓存适合存放的数据: 查询频率高且修改频率低 数据安全性低 作为缓存的组件: redis组件 memory组件 e…...

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第四十七章 字符设备和杂项设备总结回顾
i.MX8MM处理器采用了先进的14LPCFinFET工艺,提供更快的速度和更高的电源效率;四核Cortex-A53,单核Cortex-M4,多达五个内核 ,主频高达1.8GHz,2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…...

C#初级——枚举
枚举 枚举是一组命名整型常量。 enum 枚举名字 { 常量1, 常量2, …… 常量n }; 枚举的常量是由 , 分隔的列表。并且,在这个整型常量列表中,通常默认第一位枚举符号的值为0,此后的枚举符号的值都比前一位大1。 在将枚举赋值给 int 类型的…...

Linux 动静态库
一、动静态库 1、库的理解 库其实是给我们提供方法的实现,如上面的对于printf函数的实现就是在库中实现的,而这个库也就是c标准库,本质也是文件,也有对应的路径 2、区别 静态库是指编译链接时,把库文件的代码全部加入…...

微信小游戏之 三消(一)
首先设定一下 单个 方块 cell 类: 类定义和属性 init 方法 用于初始化方块,接收游戏实例、数据、宽度、道具类型和位置。 onWarning 方法 设置警告精灵的帧,并播放闪烁动作,用于显示方块的警告状态。 grow 方法 根据传入的方向…...

软件测试---Linux
Linux命令使用:为了将来工作中与服务器设备进行交互而准备的技能(远程连接/命令的使用)数据库的使用:MySQL,除了查询动作需要重点掌握以外,其他操作了解即可什么是虚拟机 通过虚拟化技术,在电脑…...
数据库之数据表基本操作
目录 一、创建数据表 1.创建表的语法形式 2.使用SQL语句设置约束条件 1.设置主键约束 2.设置自增约束 3.设置非空约束 4.设置唯一性约束 5.设置无符号约束 6.设置默认约束 7.设置外键约束 8.设置表的存储引擎 二、查看表结构 1.查看表基本结构 2.查看建表语句 三…...

利用OSMnx求路网最短路径并可视化(二)
书接上回,为了增加多路径的可视化效果和坐标匹配最近点来实现最短路可视化,我们使用图形化工具matplotlib结合OSMnx的绘图功能来展示整个路网图,并特别高亮显示计算出的最短路径。 多起终点最短路路径并计算距离和时间 完整代码#运行环境 P…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
Neo4j 完全指南:从入门到精通
第1章:Neo4j简介与图数据库基础 1.1 图数据库概述 传统关系型数据库与图数据库的对比图数据库的核心优势图数据库的应用场景 1.2 Neo4j的发展历史 Neo4j的起源与演进Neo4j的版本迭代Neo4j在图数据库领域的地位 1.3 图数据库的基本概念 节点(Node)与关系(Relat…...
信息系统分析与设计复习
2024试卷 单选题(20) 1、在一个聊天系统(类似ChatGPT)中,属于控制类的是()。 A. 话语者类 B.聊天文字输入界面类 C. 聊天主题辨别类 D. 聊天历史类 解析 B-C-E备选架构中分析类分为边界类、控制类和实体类。 边界…...