postman请求响应加解密
部分接口,需要请求加密后,在发动到后端。同时后端返回的响应内容,也是经过了加密。此时,我们先和开发获取到对应的【密钥】,然后在postman的预执行、后执行加入js脚本对明文请求进行加密,然后在发送请求;响应回来后,后执行会解密响应内容。
如aes加密请求。
预执行操作:

//预执行const crypto = require('crypto-js')let timeNow = Date.now();var key = crypto.enc.Utf8.parse(pm.environment.get('key')); // 16字节的密钥
var iv = crypto.enc.Utf8.parse(pm.environment.get('iv')); // 16字节的初始化向量if (pm.request.body) {// 要加密的数据objJson = JSON.parse(pm.request.body.raw)objJson.Data.incidentTime = timeNowobjJson.TimeStamp = timeNowconsole.log('加密前的请求数据:', objJson);var data = JSON.stringify(objJson.Data);// 使用 AES 加密(使用 ECB 模式)var encryptedData = crypto.AES.encrypt(data, key, { iv: iv, mode: crypto.mode.CBC, padding: crypto.pad.Pkcs7 });objJson.Data = encryptedData.toString();pm.request.body.raw = objJson;// 输出加密后的结果console.log('加密后的数据:', pm.request);
}
预执行,控制台输出

后执行操作:

const crypto = require('crypto-js')if (responseBody) {var result = JSON.parse(responseBody);//把返回的字符串格式数据转换为对象的形式,并保存到result变量中var key = crypto.enc.Utf8.parse(pm.environment.get("key"));var iv = crypto.enc.Utf8.parse(pm.environment.get("iv"));if (result.Data) {var decryptedData = crypto.AES.decrypt(result.Data, key, { iv: iv, mode: crypto.mode.CBC, padding: crypto.pad.Pkcs7 });var decryptedText = decryptedData.toString(crypto.enc.Utf8)result.Data = decryptedText;pm.response.raw = JSON.stringify(result);pm.response.raw.set = result;console.log('响应解密', pm.response.raw);}
}
响应解密

相关文章:
postman请求响应加解密
部分接口,需要请求加密后,在发动到后端。同时后端返回的响应内容,也是经过了加密。此时,我们先和开发获取到对应的【密钥】,然后在postman的预执行、后执行加入js脚本对明文请求进行加密,然后在发送请求&am…...
数据集,批量更新分类数值OR批量删除分类行数据
数据集批量更新分类OR删除分类行数据 import osdef remove_class_from_file(file_path, class_to_remove):"""从YOLO格式的标注文件中删除指定类别的行记录,并去除空行。:param file_path: YOLO标注文件路径:param class_to_remove: 需要删除的类别…...
一款功能强大的视频编辑软件会声会影2023
会声会影2023是一款功能强大的视频编辑软件,由加拿大Corel公司制作,正版英文名称为Corel VideoStudio。它具备图像抓取和编修功能,可以处理和转换多种视频格式,如MV、DV、V8、TV和实时记录抓取画面文件。会声会影提供了…...
政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署LivePortrait :通过缝合和重定向控制实现高效的肖像动画制作
目录 项目论文介绍 论文中实际开展的工作 非扩散性的肖像动画 基于扩散的肖像动画 方法论 基于Ubuntu的部署实践开始 1. 克隆代码并准备环境 2. 下载预训练权重 3. 推理 快速上手 驱动视频自动裁剪 运动模板制作 4. Gradio 界面 5. 推理速度评估 社区资源 政安…...
在Spring项目中使用Maven和BCrypt来实现修改密码功能
简介 在数字时代,信息安全的重要性不言而喻,尤其当涉及到个人隐私和账户安全时。每天,无数的用户登录各种在线服务,从社交媒体到银行账户,再到电子邮件和云存储服务。这些服务的背后,是复杂的系统架构&am…...
RedHat8安装Oracle19C
RedHat8安装Oracle19C 1、 更新yum源 更新yum源为阿里云镜像源: # 进入源目录 cd /etc/yum.repos.d/ # 删除 redhat 默认源 rm redhat.repo # 下载阿里云的centos7源 curl -O http://mirrors.aliyun.com/repo/Centos-8.repo # 替换 Centos-8.repo 中的 $releasev…...
React系列面试题
大家好,我是有用就点赞,有用就扩散。 1.React的组件间通信都有哪些形式? 父传子:在React中,父组件调用子组件时可以将要传递给子组件的数据添加在子组件的属性中,在子组件中通过props属性进行接收。这个就…...
C#:通用方法总结—第6集
大家好,今天继续介绍我们的通用方法系列。 下面是今天要介绍的通用方法: (1)这个通用方法为SW查找草图数量 /// <summary> /// 查找草图数量 /// </summary> /// <param name"doc2"></param>…...
Spark实时(一):StructuredStreaming 介绍
文章目录 Structured Streaming 介绍 一、SparkStreaming实时数据处理痛点 1、复杂的编程模式 2、SparkStreaming处理实时数据只支持Processing Time 3、微批处理,延迟高 4、精准消费一次问题 二、StructuredStreaming架构与场景应用 三、…...
LangChain4j-RAG基础
RAG是什么 简而言之,RAG 是一种在将数据发送到 LLM 之前从数据中查找相关信息并将其注入到提示中的方法。这样LLM将获得(希望)相关信息,并能够使用这些信息进行回复,这应该会减少产生幻觉的可能性。 实现方法: 全文…...
git--本地仓库修改同步到远程仓库
尝试将本地分支推送到远程仓库时,出现一个非快速前进的错误。通常是因为远程仓库中的分支包含本地分支没有的提交。在推送之前,需要将远程仓库的更改合并到本地分支。 解决步骤如下: 切换到你的本地分支: 确保处于想要推送的分支…...
剑和沙盒 3 - 深度使用和解析Windows Sandbox
介绍 两年前,微软作为Insiders build 18305的一部分发布了一项新功能- Windows Sandbox。 该沙箱具有一些有用的规格: Windows 10(Pro/Enterprise)的集成部分。在 Hyper-V 虚拟化上运行。原始且可抛弃 – 每次运行时都干净地开…...
深度学习loss
pytorch模型训练demo代码 在PyTorch中,模型训练通常涉及几个关键步骤:定义模型、定义损失函数、选择优化器、准备数据加载器、编写训练循环。以下是一个简单的PyTorch模型训练演示代码,该代码实现了一个用于手写数字识别(使用MNIS…...
编写一个Chrome插件,网页选择文字后,右键出现菜单“search with bing”,选择菜单后用bing搜索文字
kimi ai 生成,测试可用,需要自行准备图标文件 创建一个简单的Chrome插件来实现选择文本后的搜索功能,你需要完成以下几个步骤: 创建插件的基础文件夹和文件: 创建一个文件夹用于存放插件的所有文件。在该文件夹中创建以…...
【算法】分割回文串
难度:中等 题目: 给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串。返回 s 所有可能的分割方案。 示例 1: 输入:s = “aab” 输出:[[“a”,“a”,“b”],[“aa”,“b”]] 示例 2: 输入:s = “a” 输出:[[“a”]] 提示: 1 <= s.length <…...
lua 游戏架构 之 游戏 AI (三)ai_attack
这段Lua脚本定义了一个名为 ai_attack 的类,继承自 ai_base 类。 lua 游戏架构 之 游戏 AI (一)ai_base-CSDN博客文章浏览阅读119次。定义了一套接口和属性,可以基于这个基础类派生出具有特定行为的AI组件。例如,可以…...
大数据之Oracle同步Doris数据不一致问题
数据同步架构如下: 出现的问题: doris中的数据条数 源库中的数据条数 总数完全不一致。 出现问题的原因: 在Dinky中建立表结构时,缺少对主键属性的限制 primary key(ID) not enforced 加上如上语句,数据条数解决一致 …...
visual studio 问题总结
一. Visual Studio: 使用简体中文(GB2312)编码加载文件, 有些字节已用Unicode替换字符更换 解决方法:vs 工具-》选项-》文本编辑器...
go-错误码的最佳实践
一、背景 在工程开发中,我们有以下场景可以用错误码解决 我们不太方便直接将内部的错误原因暴露给外部,可以根据错误码得到对应的外部暴露消息通过设定错误码判断是客户端或者服务端的问题,避免不必要的排障浪费方便查找日志,定…...
Python面试题:使用Matplotlib和Seaborn进行数据可视化
使用Matplotlib和Seaborn进行数据可视化是数据分析中非常重要的一部分。以下示例展示了如何使用这两个库来创建各种图表,包括基本的线图、柱状图、散点图和高级的分类数据可视化图表。 安装 Matplotlib 和 Seaborn 如果你还没有安装这两个库,可以使用以…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
