当前位置: 首页 > news >正文

机器学习算法与Python实战 | 两行代码即可应用 40 个机器学习模型--lazypredict 库!

本文来源公众号“机器学习算法与Python实战”,仅用于学术分享,侵权删,干货满满。

原文链接:两行代码即可应用 40 个机器学习模型

今天和大家一起学习使用 lazypredict 库,我们可以用一行代码在我们的数据集上实现许多 ML 模型,这样我们就可以简要了解哪些模型适合我们的数据集。

第1步

使用以下方法安装 lazypredict 库:

pip install lazypredict

第2步

导入 pandas 来加载我们的数据集。

import pandas as pd

第3步

加载数据集。

df = pd.read_csv('Mal_Customers.csv')

第4步

打印数据集的前几行

这里 Y 变量是支出分数列,而其余列是 X 变量。

现在,在确定了 X 和 Y 变量之后,我们将它们分成训练和测试数据集。

# 导入 train_test_split,用于分割数据集
from sklearn.model_selection import train_test_split
# 定义 X 和 y 变量
X = df.loc[:, df.columns != 'Spending Score (1-100)']
y = df['Spending Score (1-100)'] # 对数据进行分区。
# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

第5步

我们导入之前安装的lazypredict库,lazypredict里面有两个类,一个用于分类,一个用于回归。

# 导入 lazypredict
导入 lazypredict
# 从 lazypredict 导入回归类
from lazypredict.Supervised import LazyRegressor
# 从 lazypredict.Supervised 中导入分类类
from lazypredict.Supervised import LazyClassifier

导入后,我们将使用 LazyRegressor,因为我们正在处理回归问题,如果你正在处理分类问题,则这两种类型的问题都需要相同的步骤。

# 使用 LazyRegressor 定义模型
multiple_ML_model = lazyRegressor(verbose=0, ignore_warnings=True, predictions=True)
# 对模型进行拟合,同时预测每个模型的输出结果
models, predictions = multiple_ML_model.fit(X_train, X_test, y_train, y_test)

这里,prediction = True 表示你想要获得每个模型的准确性并想要每个模型的预测值。

模型的变量包含每个模型精度以及一些其他重要信息。

它在我的回归问题上实现了42 个 ML 模型,因为本指南更侧重于如何测试许多模型,而不是提高其准确性。所以我对每个模型的准确性不感兴趣。

查看每个模型的预测。

你可以利用这些预测来创建一个混淆矩阵。

如果正在处理分类问题,这就是使用 lazypredict 库的方法。

# 使用 LazyRegressor 定义模型
multiple_ML_model = lazyClassifier(verbose=0,ignore_warnings=True,predictions=True)
# 对模型进行拟合,并预测每个模型的输出结果
models, predictions = multiple_ML_model.fit(X_train, X_test, y_train, y_test)

要记住的要点:

  1. 这个库仅用于测试目的,为提供有关哪种模型在您的数据集上表现良好的信息。

  2. 建议使用conda单独建立一个虚拟环境,因为它提供了一个单独的环境,避免与其他环境有版本冲突。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

相关文章:

机器学习算法与Python实战 | 两行代码即可应用 40 个机器学习模型--lazypredict 库!

本文来源公众号“机器学习算法与Python实战”,仅用于学术分享,侵权删,干货满满。 原文链接:两行代码即可应用 40 个机器学习模型 今天和大家一起学习使用 lazypredict 库,我们可以用一行代码在我们的数据集上实现许多…...

使用WebSocket协议调用群发方法将消息返回客户端页面

目录 一.C/S架构: 二.Http协议与WebSocket协议的区别: 1.Http协议与WebSocket协议的区别: 2.WebSocket协议的使用场景: 三.项目实际操作: 1.导入依赖: 2.通过WebSocket实现页面与服务端保持长连接&a…...

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第五十七章 Linux中断实验

i.MX8MM处理器采用了先进的14LPCFinFET工艺,提供更快的速度和更高的电源效率;四核Cortex-A53,单核Cortex-M4,多达五个内核 ,主频高达1.8GHz,2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…...

每日一题~961div2A+B+C(阅读题,思维,数学log)

A 题意&#xff1a;给你 n*n 的表格和k 个筹码。每个格子上至多放一个 问至少占据多少对角线。 显然&#xff0c;要先 格数的多的格子去放。 n n-1 n-2 …1 只有n 的是一个&#xff08;主对角线&#xff09;&#xff0c;其他的是两个。 #include <bits/stdc.h> using na…...

Fireflyrk3288 ubuntu18.04添加Qt开发环境、安装mysql-server

1、创建一台同版本的ubuntu18.04的虚拟机 2、下载rk3288_ubuntu_18.04_armhf_ext4_v2.04_20201125-1538_DESKTOP.img 3、创建空img镜像容器 dd if/dev/zero ofubuntu_rootfs.img bs1M count102404、将该容器格式化成ext4文件系统 mkfs.ext4 ubuntu_rootfs.img5、将该镜像文件…...

简化mybatis @Select IN条件的编写

最近从JPA切换到Mybatis&#xff0c;使用无XML配置&#xff0c;Select注解直接写到interface上&#xff0c;发现IN条件的编写相当麻烦。 一般得写成这样&#xff1a; Select({"<script>","SELECT *", "FROM blog","WHERE id IN&quo…...

Windows图形界面(GUI)-MFC-C/C++ - Control

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 Control 资源编辑器 添加控件 设置控件属性 添加控件变量 添加消息处理 处理控件事件 控件焦点顺序 Control 资源编辑器 资源编辑器&#xff1a;用于可视化地编辑对话框和控件。…...

SQL Server数据库安全:策略制定与实践指南

SQL Server数据库安全&#xff1a;策略制定与实践指南 在当今数字化时代&#xff0c;数据安全是每个组织的核心关注点。SQL Server作为广泛使用的关系型数据库管理系统&#xff0c;提供了一套强大的安全特性来保护存储的数据。制定有效的数据库安全策略是确保数据完整性、可用…...

Spring Boot入门指南:留言板

一.留言板 1.输⼊留⾔信息,点击提交.后端把数据存储起来. 2.⻚⾯展⽰输⼊的表⽩墙的信息 规范&#xff1a; 1.写一个类MessageInfo对象&#xff0c;添加构造方法 虽然有快捷键&#xff0c;但是还是不够偷懒 项目添加Lombok。 Lombok是⼀个Java⼯具库&#xff0c;通过添加注…...

Docker 中安装和配置带用户名和密码保护的 Elasticsearch

在 Docker 中安装和配置带用户名和密码保护的 Elasticsearch 需要以下步骤。Elasticsearch 的安全功能&#xff08;包括基本身份验证&#xff09;在默认情况下是启用的&#xff0c;但在某些版本中可能需要手动配置。以下是详细步骤&#xff0c;包括如何设置用户名和密码。 1. …...

面试官:说说JVM内存调优及内存结构

1. JVM简介 JVM&#xff08;Java虚拟机&#xff09;是运行Java程序的平台&#xff0c;它使得Java能够跨平台运行。JVM负责内存的自动分配和回收&#xff0c;减轻了程序员的负担。 2. JVM内存结构 运行时数据区是JVM中最重要的部分&#xff0c;包含多个内存区域&#xff1a; …...

Ansible的脚本-----playbook剧本【下】

目录 实战演练六&#xff1a;tags 模块 实战演练七&#xff1a;Templates 模块 实战演练六&#xff1a;tags 模块 可以在一个playbook中为某个或某些任务定义“标签”&#xff0c;在执行此playbook时通过ansible-playbook命令使用--tags选项能实现仅运行指定的tasks。 playboo…...

Mysql开启远程控制简化版,亲测有效

首先关闭防火墙 改表法 打开上图的CMD&#xff0c;输入密码进入&#xff0c;然后输入一下指令 1.use mysql; 2.update user set host % where user root;//更新root用户的权限&#xff0c;允许任何主机连接 3.FLUSH PRIVILEGES;//刷新权限&#xff0c;使更改生效 具体参考…...

【MQTT协议与IoT通信】MQTT协议的使用和管理

MQTT协议与IoT通信&#xff1a;MQTT协议的使用和管理 目录 引言MQTT协议概述 什么是MQTTMQTT的工作原理 MQTT协议的关键特性 轻量级与高效性发布/订阅模式质量服务等级(QoS)持久会话安全性 MQTT协议的使用方法 设置MQTT Broker连接MQTT Client发布消息订阅主题断开连接 MQTT协…...

根据题意写出完整的css,html和js代码【购物车模块页面及功能实现】

&#x1f3c6;本文收录于《CSDN问答解惑-专业版》专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收…...

AWS免费层之后:了解和管理您的云服务成本

Amazon Web Services (AWS) 为新用户提供了12个月的免费层服务&#xff0c;这是许多人开始使用云服务的绝佳方式。但是&#xff0c;当这一年结束后&#xff0c;您的AWS使用会如何变化&#xff1f;我们九河云通过本文将探讨免费层结束后的AWS成本情况&#xff0c;以及如何有效管…...

Linux定时同步系统时间到硬件时间

Linux定时同步系统时间到硬件时间 1. 系统时间、软件时间 系统时间 &#xff08;System Time&#xff09;&#xff1a; 一般说来就是我们执行 date命令看到的时间&#xff0c;linux系统下所有的时间调 用&#xff08;除了直接访问硬件时间的命令&#xff09;都是使用的这个时…...

网络编程——wireshark抓包、tcp粘包

目录 一、前言 1.1 什么是粘包 1.2 为什么UDP不会粘包 二、编写程序 文件树 客户端程序 服务器程序 tcp程序 头文件 makefile 三、 实验现象 四、改进实验 五、小作业 一、前言 最近在做网络芯片的驱动&#xff0c;验证功能的时候需要借助wireshark这个工具&…...

el-table合计行更新问题

说明&#xff1a;在使用el-table自带的底部合计功能时&#xff0c;初始界面不会显示合计内容 解决方案&#xff1a;使用 doLayout()方法 updated() {this.$nextTick(() > {this.$refs[inventorySumTable].doLayout();});},完整代码&#xff1a; // show-summary&#xff1a…...

ChatGPT:数据库不符合第二范式示例

ChatGPT&#xff1a;数据库不符合第二范式示例 这张图片为什么不符合数据库第二范式 这个表格不符合数据库第二范式&#xff08;2NF&#xff09;的原因如下&#xff1a; 1. 数据库第二范式&#xff08;2NF&#xff09;定义 第二范式要求一个数据库表格在满足第一范式&#xf…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...