矩阵常见分解算法及其在SLAM中的应用
文章目录
- 常见特殊矩阵定义
- Cholesky分解(正定Hermittian矩阵,分解结果唯一)
- Cholesky分解应用
- SVD分解(将singularvalues排序后分解唯一)
- SVD 分解的应用(任意矩阵)
- QR分解(任意矩阵,如果A可逆并且限定分解R对角线为正,则分解唯一)
- QR分解应用
https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html

常见特殊矩阵定义
- 酉矩阵,正交矩阵
- A的元素是属于复数域矩阵,如果 A A ∗ = I AA^{*} = I AA∗=I,那么A是属于酉矩阵(Unitary Matrix)
- A的元素是属于实数域矩阵,如果 A A T = I AA^{T} = I AAT=I,那么A是属于正交矩阵(Orthogonal Matrix),当然也是Unitary Matrix
- 埃尔米特矩阵,对阵矩阵
- A的元素是属于复数域矩阵,如果 A = A ∗ A = A^{*} A=A∗,那么A是属于埃尔米特矩阵(Hermitian Matrix)
- A的元素是属于实数域矩阵,如果 A = A T A = A^{T} A=AT,那么A是属于对称矩阵(Symmetric Matrix),当然也是Hermitian Matrix
- 正定矩阵

Cholesky分解(正定Hermittian矩阵,分解结果唯一)
将一个正定Hermitian矩阵分解为两个下三角矩阵的乘积
A = L L T A = LL^T A=LLT
另一种分解方式 A = L L T = L D L T A = LL^T = LDL^T A=LLT=LDLT,要求A是半正定或者半负定矩阵,条件比上面的分解方式宽松
Cholesky分解应用
- 对于LinearGaussian 系统的状态估计问题求解 H T W − 1 H x = H T W − 1 Z H^TW^{-1}Hx = H^TW^{-1}Z HTW−1Hx=HTW−1Z
求解x的时候会把 H T W − 1 H = L L ∗ H^TW^{-1}H = LL^{*} HTW−1H=LL∗ 分解完,令 L ∗ x = d L^{*}x = d L∗x=d
(1)求解 L d = H T W − 1 Z Ld = H^TW^{-1}Z Ld=HTW−1Z中的d
(2)求解 L ∗ x = d L^{*}x = d L∗x=d中的x
以上可以导出LG系统的batch递推形式,包括5个前向公式和1个后项公式。其等价于RTS算法。
SVD分解(将singularvalues排序后分解唯一)
将任意矩阵 A M × N = U M ∗ M Σ M × N V N × N A_{M \times N} = U_{M*M} \Sigma_{M \times N} V_{N \times N} AM×N=UM∗MΣM×NVN×N,其中 U和V都是Unitary Matrix, Σ \Sigma Σ是对角矩阵,
如果M > N,如下图。U_null_space.transpose() * A 应该是零矩阵。
反之如N> M,会有A * V_null_space为零矩阵。
MSCKF利用零空间这个性质,可以消除feature 3d位置估计误差在整个残差中的影响。
Eigen::MatrixXd A = Eigen::MatrixXd::Random(6, 3);// Eigen::MatrixXd A = Eigen::MatrixXd::Random(3, 6);A << 1, 0, -1, -2, 1, 4, 3, 4, 5, 5, -7, 9, -1, 4, -6, 4, 7, -9;cout << "Here is the matrix A:" << endl << A << endl << endl;// do SVD decomposition, and print out the singular valuesEigen::JacobiSVD<Eigen::MatrixXd> svd(A, Eigen::ComputeFullU | Eigen::ComputeFullV);cout << "Its singular values are:" << endl<< svd.singularValues() << endl<< endl;cout << "Its left singular vectors are the columns of the thin U matrix:"<< endl<< svd.matrixU() << endl<< endl;cout << "Its right singular vectors are the columns of the thin V matrix:"<< endl<< svd.matrixV() << endl<< endl;const int dim = svd.singularValues().size();if (A.rows() >= A.cols()) {const Eigen::MatrixXd U_null_space =svd.matrixU().rightCols(A.rows() - dim);const Eigen::MatrixXd U_null_space_times_A = U_null_space.transpose() * A;cout << "U null space * A" << endl<< U_null_space_times_A << endl<< endl; // should be zero} else {const Eigen::MatrixXd V_null_space =svd.matrixV().rightCols(A.cols() - dim);const Eigen::MatrixXd A_times_V_null_space = A * V_null_space;cout << "A * V null space" << endl<< A_times_V_null_space << endl<< endl; // should be zero}cout << "U*U^T = \n"<< svd.matrixU() * svd.matrixU().transpose() << endl<< endl; // should be identitycout << "V*V^T = \n"<< svd.matrixV() * svd.matrixV().transpose() << endl<< endl; // should be identityreturn 0;

SVD 分解的应用(任意矩阵)
- 用于PCA,SVD的奇异值的平方等于特征值,即 σ i = λ i \sigma_i = \sqrt{\lambda_i} σi=λi。比如一堆点云,可以利用PCA性质提取line point和plane point。
- 求矩阵零空间。MSCKF中的应用。矩阵列向量的零空间维度为:dim(null space) = cols(A) - rank(A)
- 行向量子空间的维度 = rank(A) = m - (A的零空间的维度)= m - dim[Null(A)]
- 列向量子空间的维度 = rank(A) = n - (A的零空间的维度)=n - dim[Null(A)]
QR分解(任意矩阵,如果A可逆并且限定分解R对角线为正,则分解唯一)
一个m*n矩阵A(m>=n),可以分解为一个Unitary Matrix Q和一个上三角矩阵R
A m × n = Q m × m R m × n A_{m \times n} = Q_{m \times m} R_{m \times n} Am×n=Qm×mRm×n
其中R的后m-n行全部为零,可以写作
A = Q R = Q [ R 1 n × n 0 ] = [ Q 1 m × n Q 2 m × ( m − n ) ] [ R 1 n × n 0 ( m − n ) × n ] = Q 1 m × n R 1 n × n A=Q R=Q\left[\begin{array}{c} R_{1_{n \times n}} \\ 0 \end{array}\right]=\left[\begin{array}{ll} Q_{1_{m \times n}} & Q_{2_{m \times (m-n)}} \end{array}\right]\left[\begin{array}{c} R_{1_{n \times n}} \\ 0_{(m-n) \times n} \end{array}\right]=Q_{1_{m \times n}} R_{1_{n \times n}} A=QR=Q[R1n×n0]=[Q1m×nQ2m×(m−n)][R1n×n0(m−n)×n]=Q1m×nR1n×n
类似的可以有QL,RQ,LQ分解,其中L是下三角矩阵。
Eigen::MatrixXd A = Eigen::MatrixXd::Random(6, 3);A << 1, 0, -1, -2, 1, 4, 3, 4, 5, 5, -7, 9, -1, 4, -6, 4, 7, -9;Eigen::VectorXd b = Eigen::VectorXd::Random(6);Eigen::ColPivHouseholderQR<Eigen::MatrixXd> qr(A);MatrixXd householderQ = qr.householderQ();MatrixXd matrixQ = qr.matrixQ(); // 和householderQ一样MatrixXd matrixQR_triangular_upper =qr.matrixQR().triangularView<Eigen::Upper>();MatrixXd matrixR = qr.matrixR();cout << "The rank of A is " << qr.rank() << endl << endl;cout << "householderQ matrix is:\n" << householderQ << endl << endl;cout << "matrixQ matrix is:\n" << matrixQ << endl << endl;cout << "matrixQR matrix is:\n" << qr.matrixQR() << endl << endl;cout << "matrixQR.triangularView<Eigen::Upper>() matrix is:\n"<< matrixQR_triangular_upper << endl<< endl;cout << "matrixR matrix is:\n" << matrixR << endl << endl;// Do QR decomposition to sove Ax = bEigen::VectorXd x = qr.solve(b);cout << "The solution is:\n" << x << endl << endl;
![[图片]](https://i-blog.csdnimg.cn/direct/95342ab5590b4deba41cfb6863752932.png)
QR分解应用
- 求矩阵的零空间,类似SVD
- 用来求解线性最小二乘问题 A m × n x n × 1 = b m × 1 A_{m\times n}x_{n \times 1} = b_{m \times 1} Am×nxn×1=bm×1, m >> n
通常的解法 x = ( A T A ) m × m − 1 b x = (A^TA)_{m \times m}^{-1}b x=(ATA)m×m−1b 直接求逆的话,维度很大,耗时
将A进行QR分解,化简得到 R 1 x = Q 1 T b R_1 x = Q_1^Tb R1x=Q1Tb 并且R1是上三角矩阵,无需求逆,直接方程最后一行开始求解,便可以快速得到x - Kalman filter中观测量的维度m过大导致m>>状态维度n, H m × n H_{m \times n} Hm×n矩阵计算 ( H P H T + R ) − 1 (HPH^T + R)^{-1} (HPHT+R)−1非常耗时
const MatrixXX innovation_covariance = H * P * HT + V;const MatrixNX K = P * HT * innovation_covariance.inverse();
观测误差方程 r ( x ) = H X ~ + n 0 r(x) = H \tilde{X} + n_0 r(x)=HX~+n0
对H进行QR分解,两边乘以 Q T Q^T QT并带入上式得到 [ Q 1 T r o Q 2 T r o ] = [ R 1 0 ] X ~ + [ Q 1 T n o Q 2 T n o ] \left[\begin{array}{l} \mathbf{Q}_1^T \mathbf{r}_o \\ \mathbf{Q}_2^T \mathbf{r}_o \end{array}\right]=\left[\begin{array}{c} \mathbf{R}_1 \\ \mathbf{0} \end{array}\right] \tilde{\mathbf{X}}+\left[\begin{array}{l} \mathbf{Q}_1^T \mathbf{n}_o \\ \mathbf{Q}_2^T \mathbf{n}_o \end{array}\right] [Q1TroQ2Tro]=[R10]X~+[Q1TnoQ2Tno]
于是观测量维度为m的问题转化为了观测量维度为n的
Q 1 T r 0 = R 1 X ~ + Q 1 T n 0 Q_1^Tr_0 = R1 \tilde{X} + Q_1^T n_0 Q1Tr0=R1X~+Q1Tn0
将原问题中的H,残差r,观测噪声n都进行了变换,代码实现如下
MatrixXd H_thin;VectorXd r_thin;if (H.rows() > H.cols()) {// Convert H to a sparse matrix.SparseMatrix<double> H_sparse = H.sparseView();// Perform QR decompostion on H_sparse.SPQR<SparseMatrix<double>> spqr_helper;spqr_helper.setSPQROrdering(SPQR_ORDERING_NATURAL);spqr_helper.compute(H_sparse);MatrixXd H_temp;VectorXd r_temp;(spqr_helper.matrixQ().transpose() * H).evalTo(H_temp);(spqr_helper.matrixQ().transpose() * r).evalTo(r_temp);H_thin = H_temp.topRows(21 + state_server.cam_states.size() * 6);r_thin = r_temp.head(21 + state_server.cam_states.size() * 6);// HouseholderQR<MatrixXd> qr_helper(H);// MatrixXd Q = qr_helper.householderQ();// MatrixXd Q1 = Q.leftCols(21+state_server.cam_states.size()*6);// H_thin = Q1.transpose() * H;// r_thin = Q1.transpose() * r;} else {H_thin = H;r_thin = r;}// Compute the Kalman gain.const MatrixXd &P = state_server.state_cov;MatrixXd S = H_thin * P * H_thin.transpose() +Feature::observation_noise *MatrixXd::Identity(H_thin.rows(), H_thin.rows());// MatrixXd K_transpose = S.fullPivHouseholderQr().solve(H_thin*P);MatrixXd K_transpose = S.ldlt().solve(H_thin * P);MatrixXd K = K_transpose.transpose();相关文章:
矩阵常见分解算法及其在SLAM中的应用
文章目录 常见特殊矩阵定义Cholesky分解(正定Hermittian矩阵,分解结果唯一)Cholesky分解应用 SVD分解(将singularvalues排序后分解唯一)SVD 分解的应用(任意矩阵) QR分解(任意矩阵&a…...
【排序】快速排序详解
✨✨欢迎大家来到Celia的博客✨✨ 🎉🎉创作不易,请点赞关注,多多支持哦🎉🎉 所属专栏:排序 个人主页:Celias blog~ 一、快速排序的思想 快速排序的核心思想是: 选定一个…...
贪心算法总结(2)
一、买卖股票的最佳时机 . - 力扣(LeetCode) class Solution { public:int maxProfit(vector<int>& prices) {int miniINT_MAX;int ret0;for(int&price:prices){//遍历的时候,我们随时去更新最小的值,然后让每一位…...
弘景光电:技术实力与创新驱动并进
在光学镜头及摄像模组产品领域,广东弘景光电科技股份有限公司(以下简称“弘景光电”)无疑是一颗耀眼的明星。自成立以来,弘景光电凭借其强大的研发实力、卓越的产品性能、精密的制造工艺以及严格的质量管理体系,在光学…...
2024年7月23日~2024年7月29日周报
目录 一、前言 二、完成情况 2.1 一种具有边缘增强特点的医学图像分割网络 2.2 融合边缘增强注意力机制和 U-Net 网络的医学图像分割 2.3 遇到的困难 三、下周计划 一、前言 上周参加了一些师兄师姐的论文讨论会议,并完成了初稿。 本周继续修改论文࿰…...
M3U8流视频数据爬虫
M3U8流视频数据爬虫 HLS技术介绍 现在大部分视频客户端都采用HTTP Live Streaming(HLS,Apple为了提高流播效率开发的技术),而不是直接播放MP4等视频文件。HLS技术的特点是将流媒体切分为若干【TS片段】(比如几秒一段…...
保护您的数字财富:模块化沙箱在源代码防泄露中的突破
在数字化浪潮中,企业面临着前所未有的数据安全挑战。源代码、商业机密、客户数据……这些宝贵的数字资产一旦泄露,后果不堪设想。SDC沙盒防泄密系统,以其卓越的技术实力和创新的解决方案,为企业提供了一个坚不可摧的安全屏障。 核…...
FFmpeg源码:avio_r8、avio_rl16、avio_rl24、avio_rl32、avio_rl64函数分析
一、引言 AVIOContext是FFmpeg(本文演示用的FFmpeg源码版本为5.0.3)中的字节流上下文结构体,用来管理输入输出数据。打开一个媒体文件的时候,需要先把数据从硬盘读到缓冲区,然后会用到AVIOContext中的如下成员&#x…...
如何使用 API 查看极狐GitLab 镜像仓库中的镜像?
GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab :https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署…...
软件-vscode-plantUML-IDEA
文章目录 vscode基础命令 实操1. vscode实现springboot项目搭建 (包括spring data jpa和sqlLite连接) PlantUMLIDEA下载及安装Eval Reset插件配置修改IDEA创建项目的默认目录IDEA配置gitIDEA翻译插件translationIDEA断点调试IDEA全局搜索快捷键不能使用代…...
ES6语法详解,面试必会,通俗易懂版
目录 Set的基本使用WeakSet 使用Set 和 WeakSet 区别内存泄漏示例:使用普通 Set 保存 DOM 节点如何避免这个内存泄漏MapWeakMap 的使用 Set的基本使用 在ES6之前,我们存储数据的结构主要有两种:数组、对象。 在ES6中新增了另外两种数据结构&a…...
CTFshow--Web--代码审计
目录 web301 web302 web303 web304 web305 web306 web307 web308 web309 web310 web301 开始一个登录框, 下意识sql尝试一下 发现 1 的时候会到一个 checklogin.php 的路径下, 但啥也没有 好吧, 这是要审计代码的 ,下载好源码, 开始审计 看了一下源码 , 应该就是sql…...
Java语言程序设计——篇十(1)
🌿🌿🌿跟随博主脚步,从这里开始→博主主页🌿🌿🌿 接口介绍 接口概述接口定义接口的实现实战演练 👅接口的继承实战演练实战演练 接口的类型常量实战演练 静态方法默认方法解决默认方…...
Qt对比MFC优势
从Qt小白到现在使用了有四年的时间,之前也搞过MFC,WinForm,基本上都是桌面的框架, 从难易程度看MFC>QT>WinForm; 运行的效率上来看MFC>QT>WinForm; 开发效率上WinForm>QT>MFC; 跨平台Qt首选; 界面的美观难易程度Qt>…...
RuntimeError: No CUDA GPUs are available
RuntimeError: No CUDA GPUs are available 目录 RuntimeError: No CUDA GPUs are available 【常见模块错误】 【解决方案】 解决步骤如下: 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科…...
URL参数中携带中文?分享 1 段优质 JS 代码片段!
本内容首发于工粽号:程序员大澈,每日分享一段优质代码片段,欢迎关注和投稿! 大家好,我是大澈! 本文约 800 字,整篇阅读约需 1 分钟。 今天分享一段优质 JS 代码片段,在发送 ajax 请…...
sass的使用
一、变量 //声明一个变量 $highlight-color: #F90; .selected {border: 1px solid $highlight-color; }//编译后 .selected {border: 1px solid #F90; }二、导入 import "xxx.scss"三、混合器简单定义 通过mixin定义,通过include调用 // mixin.scss /…...
【足球走地软件】走地数据分析预测【大模型篇】走地预测软件实战分享
了解什么是走地数据? 走地数据分析,在足球赛事的上下文中,是一种针对正在进行中的比赛进行实时数据分析的方法。这种方法主要用于预测比赛中的某些结果或趋势,如总进球数、比分变化、球队表现等。 在足球走地数据分析中…...
现在有什么赛道可以干到退休?
最近,一则“90后无论男女都得65岁以后退休”的消息在多个网络平台流传,也不知道是真是假,好巧不巧今天刷热点的时候又看到一条这样的热点:现在有什么赛道可以干到退休? 点进去看了几条热评,第一条热评说的…...
c程序杂谈系列(职责链模式与if_else)
从处理器的角度来说,条件分支会导致指令流水线的中断,所以控制语句需要严格保存状态,因为处理器是很难直接进行逻辑判断的,有可能它会执行一段时间,发现出错后再返回,也有可能通过延时等手段完成控制流的正…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
