当前位置: 首页 > news >正文

机器学习 | 回归算法原理——随机梯度下降法

Hi,大家好,我是半亩花海。接着上次的多重回归继续更新《白话机器学习的数学》这本书的学习笔记,在此分享随机梯度下降法这一回归算法原理。本章的回归算法原理还是基于《基于广告费预测点击量》项目,欢迎大家交流学习!

目录

一、随机梯度下降法概述

二、案例分析

1. 设置问题 

2. 定义模型

3. 随机梯度下降法(拓展)


一、随机梯度下降法概述

随机梯度下降法是一种优化算法,用于最小化目标函数,即减少模型预测和实际结果之间的差距。它是梯度下降算法的一种变体,其核心原理是在每次迭代搜索中,算法随机选择一个样本或数据点(或一小批样本),计算该样本的梯度,然后用这个梯度更新模型参数

随机梯度下降算法(Stochastic Gradient Descent,SGD)和批量梯度下降算法(Batch Gradient Descent,BGD)的区别在于:随机梯度算法每次只使用少数几个样本点或数据集(每次不重复)的梯度的平均值就更新一次模型;而批量梯度下降算法需要使用所有样本点或数据集的梯度的平均值更新模型。、

举一个经典而形象的例子:假设你现在在山上,为了以最快的速度下山,且视线良好,你可以看清自己的位置以及所处位置的坡度,那么沿着坡向下走,最终你会走到山底。但是如果你被蒙上双眼,那么你则只能凭借脚踩石头的感觉判断当前位置的坡度,精确性就大大下降,有时候你认为的坡,实际上可能并不是坡,走一段时间后发现没有下山,或者曲曲折折走了好多路才能下山。类似的,批量梯度下降法就好比正常下山,而随机梯度下降法就好比蒙着眼睛下山

因此,随机梯度下降算法的效率明显提高,目前已经得到了广泛应用。

例子来源于:《详解随机梯度下降法(Stochastic Gradient Descent,SGD)_随机梯度下降公式-CSDN博客》


二、案例分析

1. 设置问题 

在介绍随机梯度下降法之前,我们先得知道之前研究过最速下降法,它除了计算花时间以外,还有一个缺点那就是容易陷入局部最优解

在讲解回归时,我们使用的是平方误差目标函数。这个函数形式简单,所以用最速下降法也没有问题。现在我们来考虑稍微复杂一点的,比如这种形状的函数:

用最速下降法来找函数的最小值时,必须先要决定从哪个 x 开始找起。之前我用 g(x) 说明的时候是从 x = 3 或者 x=-1 开始的,那是为了讲解而随便选的作为初始值。选用随机数作为初始值的情况比较多。不过这样每次初始值都会变,进而导致陷入局部最优解的问题。

假设这张图中标记的位置就是初始值

倘若从这个点开始找,似乎可以求出最小值。但是如果我们换一个初始点,如下所示,那么可能没计算完就会停止,便陷入了局部最优解

这个算法虽然简单,但是容易发生各种问题,但最速下降法也不会白学,随机梯度下降法就是以最速下降法为基础的。

2. 定义模型

由 《机器学习 | 回归算法原理——最速下降法(梯度下降法)-CSDN博客》可知,最速下降法的参数更新表达式为:

\theta_j:=\theta_j-\eta \sum_{i=1}^n\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) x_j^{(i)}

这个表达式使用了所有训练数据的误差,而在随机梯度下降法中会随机选择一个训练数据,并使用它来更新参数。下面这个表达式中的 k 就是被随机选中的数据索引。

\theta_j:=\theta_j-\eta\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(k)}\right)-y^{(k)}\right) x_j^{(k)}

最速下降法更新 1 次参数的时间,随机梯度下降法可以更新 n 次。 此外,随机梯度下降法由于训练数据是随机选择的,更新参数时使用的又是选择数据时的梯度,所以不容易陷入目标函数的局部 最优解,在实际运用上的确会收敛

3. 随机梯度下降法(拓展)

我们前面提到了随机选择 1 个训练数据的做法,此外还有随机选择 m 个训练数据来更新参数的做法。设随机选择 m 个训练数据的索引的集合为 K,则更新参数如下:

\theta_j:=\theta_j-\eta \sum_{k \in K}\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(k)}\right)-y^{(k)}\right) x_j^{(k)}

现在假设训练数据有 100 个,那么在 m = 10 时,创建一个有 10 个随机数的索引的集合,例如 K = {61, 53, 59, 16, 30, 21, 85, 31, 51, 10},然后重复更新参数,这种做法被称为小批量(mini-batch)梯度下降法。 这像是介于最速下降法和随机梯度下降法之间的方法。

ps:不论是随机梯度下降法还是小批量梯度下降法,我们都必须考虑学习率 \eta,将 \eta 设置为合适的值是尤为重要。

相关文章:

机器学习 | 回归算法原理——随机梯度下降法

Hi,大家好,我是半亩花海。接着上次的多重回归继续更新《白话机器学习的数学》这本书的学习笔记,在此分享随机梯度下降法这一回归算法原理。本章的回归算法原理还是基于《基于广告费预测点击量》项目,欢迎大家交流学习!…...

LeetCode 面试经典 150 题 | 位运算

目录 1 什么是位运算?2 67. 二进制求和3 136. 只出现一次的数字4 137. 只出现一次的数字 II5 201. 数字范围按位与 1 什么是位运算? ✒️ 源自:位运算 - 菜鸟教程 在现代计算机中,所有数据都以二进制形式存储,…...

postMessage 收到消息类型 “webpackWarnings“

场景描述: 当A系统中的parent页面使用iframe内嵌C系统的child页面,并且在parent页面中通过postMessageg给child页面发送消息时,如果C系统中使用了webpack,则webpack也会给child页面发送消息 ,消息类型为webpackWarnings。那么如何…...

计算机基础(day1)

1.什么是内存泄漏?什么是内存溢出?二者有什么区别? 2.了解的操作系统有哪些? Windows,Unix,Linux,Mac 3. 什么是局域网,广域网? 4.10M 兆宽带是什么意思?理论…...

cesium添加流动线

1:新建Spriteline1MaterialProperty.js文件 import * as Cesium from cesium;export function Spriteline1MaterialProperty(duration, image) {this._definitionChanged new Cesium.Event();this.duration duration;this.image image;this._time performance.…...

使用java自带的队列进行存取数据ArrayBlockingQueue 多线程读取ExecutorService

场景: 防止接收数据时处理不过来导致阻塞,使用ArrayBlockingQueue队列存储数据后,以多线程的方式处理数据 保证系统性能。 package com.yl.demo.main4;import java.text.SimpleDateFormat; import java.util.Date; import java.util.concurr…...

【音视频之SDL2】Windows配置SDL2项目模板

文章目录 前言 SDL2 简介核心功能 Windows配置SDL2项目模板下载SDL2编译好的文件VS配置SDL2 测试代码效果展示 总结 前言 在开发跨平台的音视频应用程序时,SDL2(Simple DirectMedia Layer 2)是一个备受欢迎的选择。SDL2 是一个开源库&#x…...

JavaScript 里的深拷贝和浅拷贝

JavaScript 里的深拷贝和浅拷贝 JS中数据类型分为基本数据类型和引用数据类型。 基本类型值指的是那些保存在栈内存中的简单数据段。包含Number,String,Boolean,Null,Undefined ,Symbol。 引用类型值指的是那些保存…...

Oracle基础-集合

集合:两个结果集的字段个数和字段类型必须相同,才能使用集合操作。 --UNION 并集 重复行会去重 (SELECT A,B FROM DUAL UNION SELECT C,D FROM DUAL) UNION (SELECT A,B FROM DUAL UNION SELECT E,F FROM DUAL ); --UNION ALL 全集 包含所有记录 不去重…...

《浅谈如何培养树立正确的人工智能伦理观念》

目录 摘要: 一、引言 二、《机械公敌》的情节与主题概述 三、人工智能伦理与法律问题分析 1.伦理挑战 2.法律问题 四、培养正确的人工智能伦理观念的重要性 五、培养正确的人工智能伦理观念的途径与方法 1.加强教育与宣传 2.制定明确的伦理准则和规范 3.…...

uniapp实现局域网(内网)中APP自动检测版本,弹窗提醒升级

uniapp实现局域网(内网)中APP自动检测版本,弹窗提醒升级 在开发MES系统的过程中,涉及到了平板端APP的开发,既然是移动端的应用,那么肯定需要APP版本的自动更新功能。 查阅相关资料后,在uniapp的…...

【Golang 面试 - 进阶题】每日 3 题(六)

✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/UWz06 📚专栏简介:在这个专栏中,我将会分享 Golang 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏…...

Unity横板动作游戏 -项目准备

项目准备 这是一篇 Unity 2022 最新稳定版本的教程同步笔记,本文将会讲解一些开始学习必须的条件。 安装环境 首先是安装 UnityHub,然后在 UnityHub 中安装 Unity 的版本(2022)。 只需要安装 开发者工具 和文档即可,导出到其他平台的工具等…...

基于Gunicorn + Flask + Docker的高并发部署策略

标题:基于Gunicorn Flask Docker的高并发部署策略 引言 随着互联网用户数量的增长,网站和应用程序需要能够处理越来越多的并发请求。Gunicorn 是一个 Python WSGI HTTP 服务器,Flask 是一个轻量级的 Web 应用框架,Docker 是一…...

jdk版本管理利器-sdkman

1.什么是sdkman? sdkman是一个轻量级、支持多平台的开源开发工具管理器,可以通过它安装任意主流发行版本(例如OpenJDK、Kona、GraalVM等等)的任意版本的JDK。通过下面的命令可以轻易安装sdkman: 2.安装 curl -s "https://…...

Kafka知识总结(事务+数据存储+请求模型+常见场景)

文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 事务 事务Producer保证消息写入分区的原子性,即这批消…...

C#中重写tospring方法

在C#中,重写ToString方法允许你自定义对象的字符串表示形式。当你想要打印对象或者在调试时查看对象的状态时,重写ToString方法非常有用。 默认情况下,ToString方法返回对象的类型名称。通过重写这个方法,你可以返回一个更有意义…...

【机器学习基础】机器学习的数学基础

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈Python机器学习 ⌋ ⌋ ⌋ 机器学习是一门人工智能的分支学科,通过算法和模型让计算机从数据中学习,进行模型训练和优化,做出预测、分类和决策支持。Python成为机器学习的首选语言,…...

fastapi之零

FastAPI 详细介绍 FastAPI 是一个现代、快速(高性能)的 web 框架,用于构建 API。它基于标准的 Python 类型提示,使用 Starlette 作为 web 框架,Pydantic 进行数据验证和解析。以下是对 FastAPI 的详细介绍&#xff0c…...

SpringBoot整合PowerJob 实现远程任务

PowerJob介绍 PowerJob 是全新一代分布式任务调度和计算框架,提供了可视化界面,可通过单机、远程等形式调用任务并提供了运行监控和日志查看的功能模块,是当前比较流行的分布式定时任务框架之一; PowerJob 官网文档地址 环境搭建…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...