Glove-词向量
文章目录
- 共现矩阵
- 共线概率
- 共线概率比
- 词向量训练总结
- 词向量存在的问题
上一篇文章词的向量化介绍了词的向量化,词向量的训练方式可以基于语言模型、基于窗口的CBOW和SKipGram的这几种方法。今天介绍的Glove也是一种训练词向量的一种方法,他是基于共现概率比的一种训练方式。
共现矩阵
首先共现二字很好理解,就是一起出现的意思。对一句话进行切分,可以分成 n n n个词,对于这 n n n个词,可以形成一个矩阵,矩阵里面的数字就代表着窗口内共同出现的次数,窗口可以选1,代表着两个词相邻出现的次数。窗口如果选2,就是相邻的3个词可以认为共同出现了。
例如语料:
今天 天气 不错
今天 天气 很 好
天气 很 好
天气 不错
可以形成以下共线矩阵
共线概率
词 j j j出现在词 i i i周围的概率,被称为词 i i i和词 j j j的共现概率 P ( X i j ∣ X j ) = X i j X j P(X_{ij}|X_j)=\frac{X_{ij}}{X_j} P(Xij∣Xj)=XjXij计算方式就是两个词共同出现的次数除于词 j j j的次数。
共线概率比
共现概率比就是两个共现概率的比值。
对于固体这个词,和冰出现的概率较大,而和蒸汽出现的概率较小,对于两者的比值就是就是一个较大的数字,而对于气体这个词是和冰的共线概率较小和蒸汽这个词的共线概率更大,他们的共线概率值就是一个较小的一个值。而对于中兴词,如水和流行两个词他们和冰与蒸汽的共线概率较为相近,共线概率比就为1。共线概率比就是能反应这样的意思,构建词向量对他们的共线概率比能接近上述的值。这种训练方式就被成为Glove的词向量训练方式。
问题转化:
给定三个词的词向量,Va, Vb, Vc三者的通过某个函数映射后,其比值应接近ABC的共现概率比
即目标为找到向量使得 f(Va, Vb, Vc) = P(A|B)/P(A|C),预测数值,属于回归问题, 损失函数使用均方差,f的设计论文中给出的是f(Va, Vb, Vc) = (Va - Vb )·Vc。
词向量训练总结
一、根据词与词之间关系的某种假设,制定训练目标。
二、设计模型,以词向量为输入。
三、随机初始化词向量,开始训练。
四、训练过程中词向量作为参数不断调整,获取一定的语义信息。
五、使用训练好的词向量做下游任务。
词向量存在的问题
- 词向量是“静态”的。每个词使用固定向量,没有考虑前后文
- 一词多义的情况。西瓜 - 苹果 - 华为,西瓜和苹果语义相近,苹果和华为语义相近,那么西瓜和华为是否语义接近呢?
- 影响效果的因素非常多:维度选择、随机初始化、skip-gram/cbow/glove、分词质量、词频截断、未登录词、窗口大小、迭代轮数、停止条件、语料质量等
- 没有好的直接评价指标。常需要用下游任务来评价
相关文章:

Glove-词向量
文章目录 共现矩阵共线概率共线概率比词向量训练总结词向量存在的问题 上一篇文章词的向量化介绍了词的向量化,词向量的训练方式可以基于语言模型、基于窗口的CBOW和SKipGram的这几种方法。今天介绍的Glove也是一种训练词向量的一种方法,他是基于共现概率…...
Plugin ‘mysql_native_password‘ is not loaded`
Plugin mysql_native_password is not loaded mysql_native_password介绍1. 使用默认的认证插件2. 修改 my.cnf 或 my.ini 配置文件3. 加载插件(如果确实没有加载)4. 重新安装或检查 MySQL 版本 遇到错误 ERROR 1524 (HY000): Plugin mysql_native_passw…...

Hive数据类型
原生数据类型 准备数据 查看表信息 加载数据 查看数据 复杂数据类型-数组 准备数据 查看数据 优化 复杂数据类型-map 准备数据 查看数据 复杂数据类型-默认分隔符 准备数据 查看数据 原生数据类型 准备数据 -- 1 建库 drop database if exists db_1 cascade;…...

OSI七层网络模型:构建网络通信的基石
在计算机网络领域,OSI(Open Systems Interconnection)七层模型是理解网络通信过程的关键框架。该模型将网络通信过程细分为七个层次,每一层都有其特定的功能和职责,共同协作完成数据从发送端到接收端的传输。接下来&am…...

MSYS2下载安装和使用
Minimalist GNU(POSIX)system on Windows,Windows下的GNU环境。 目录 1. 安装 2. pacman命令 3. 配置vim 4. 一些使用示例 4.1 编译代码 4.2 SSH登录远程服务器 1. 安装 官网下载:https://www.msys2.org/ 双击.exe文件&am…...

机器学习中的决策树算法——从理论到实践完整指南
决策树在机器学习中的应用与原理 1. 介绍1.1 定义和基本概念1.2 决策树在机器学习中的角色和重要性 2. 决策树的结构2.1 节点、分支、叶子节点的定义和功能2.1.1 节点2.1.2 分支2.1.3 叶子节点 2.2 树的深度和宽度的影响2.2.1 树的深度2.2.2 树的宽度 3. 决策树的构建方法3.1 基…...

FFplay介绍及命令使用指南
😎 作者介绍:欢迎来到我的主页👈,我是程序员行者孙,一个热爱分享技术的制能工人。计算机本硕,人工制能研究生。公众号:AI Sun(领取大厂面经等资料),欢迎加我的…...

php实现动态登录
简介: 效果:通过前端页面的注册,通过MD5将密码加密,发送到数据库,通过验证数据库的内容实现登录,以及各种保证安全的措施 实验环境:phphtmlcssmysql数据表,使用html css设计注册&a…...

Servlet2-HTTP协议、HttpServletRequest类、HttpServletResponse类
目录 HTTP协议 什么是HTTP协议 HTTP协议的特点 请求的HTTP协议格式 GET请求 POST请求 常用的请求头说明 哪些是GET请求,哪些是POST请求 响应的HTTP协议格式 常见的响应码说明 MIME类型说明 HttpServletRequest类 作用 常用方法 如何获取请求参数 po…...
探索数据的内在世界:sklearn中分层特征聚类标签的可视化技术
探索数据的内在世界:sklearn中分层特征聚类标签的可视化技术 在机器学习中,聚类是一种探索数据结构的强大工具。对于具有分层特征的数据,如文本、时间序列或分类标签,聚类结果的可视化可以提供深入的洞见。本文将详细介绍如何在s…...
airtest定位方法
airtest定位方法 最近遇到一个比较新颖的airtest方法,分享给大家。一键三连; airtest是一款用于自动化测试的Python库,被广泛应用于移动应用和游戏的测试中。在进行自动化测试时,定位元素是非常重要的一步,因为只有准…...
排列组合 n*(n-1)*(n-m+1)
n*(n-1)*(n-m1)/m! --# 组合 n*(n-1)*(n-m1)/m! local function get_combinations(n,m) c 1 c0 1 for i 1,m do c c*(n-i1) c c/i end return math.floor(c) end print(get_combinations(10,6)) 打印出来为:210...
Python面试整理-数据处理和分析
在Python中,数据处理和分析是一项非常重要的应用,得益于丰富的第三方库和工具,Python已经成为数据科学家和分析师的首选语言之一。以下是进行数据处理和分析时常用的工具和方法: 1. 数据处理 a. Pandas ● 功能: Pandas 提供了强大的 DataFrame 结构,使得数据操作和预处理…...

职业教育计算机网络综合实验实训室建设应用案例
近年来,职业教育在培养技能型人才方面发挥着越来越重要的作用。然而,传统的计算机网络技术教学模式往往重理论、轻实践,导致学生缺乏实际操作能力和职业竞争力。为了改变这一现状,唯众结合职业教育特点,提出了“教、学…...

【Docomo】5G
我们想向您介绍第五代移动通信系统“5G”。 5G 什么是5G?支持5G的技术什么是 5G SA(独立)?实现高速率、大容量的5G新频段Docomo的“瞬时5G”使用三个宽广的新频段 什么是5G? 5G(第五代移动通信系统&#x…...
Servlet详解(Servlet源码)
Servlet Servlet是运行在Web服务器或应用服务器上的小程序,它作为来自Web浏览器或其他HTTP客户端的请求和HTTP服务器上的数据库或应用程序之间的中间层。Servlet能够接收来自客户端的基于HTTP协议的请求,并且对请求进行响应。 Servlet是用来处理客户端请…...
仓颉--接收控制台输入
package projectNameimport std.console.*main() {Console.stdOut.write("请输入信息1:")var c Console.stdIn.readln() // 输入:你好,请问今天星期几?var r c.getOrThrow()Console.stdOut.writeln("输入的信息1…...

数据库设计效率提高的5大注意事项
数据库设计效率和质量的提高对项目影响深远,能够显著提升数据访问速度,确保数据一致性和完整性,减少应用开发和维护成本,同时提升系统稳定性和用户体验。如果数据库设计不佳会导致项目性能低下,数据访问缓慢࿰…...
C语言笔试题(一)
本专栏通过整理各专业方向的面试资料并咨询业界相关人士,整合不同方向的面试资料,希望能为您的面试道路点亮一盏灯! 1 简单题 C语言中的注释如何写? 答案: 单行注释使用//,多行注释使用/* ... */解析: 注释用于…...
轻松实现远程智能交互:OriginBot与钉钉和GPT4o的集成指南
说明 我之前实现了简单UI来跟OriginBot交互,可以参考这里:古月居 - ROS机器人知识分享社区 但是由于我不是专业的前端开发,写UI还是比较耗时的,所以最近想修改一下这部分。 还有一个原因是,自己开发前端,…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
Qt Quick Controls模块功能及架构
Qt Quick Controls是Qt Quick的一个附加模块,提供了一套用于构建完整用户界面的UI控件。在Qt 6.0中,这个模块经历了重大重构和改进。 一、主要功能和特点 1. 架构重构 完全重写了底层架构,与Qt Quick更紧密集成 移除了对Qt Widgets的依赖&…...