当前位置: 首页 > news >正文

【注意力MHA,MQA,GQA,MLA】

注意力机制优化简明图解

1. 多头注意力(MHA)

图示:

Input --> [Attention Head 1]--> [Attention Head 2]--> [Attention Head 3]--> ...--> [Attention Head N]--> [Concatenate] --> Output

公式:

Output = Concat ( head 1 , head 2 , … , head N ) \text{Output} = \text{Concat}(\text{head}_1, \text{head}_2, \ldots, \text{head}_N) Output=Concat(head1,head2,,headN)
head i = Attention ( Q , K , V ) \text{head}_i = \text{Attention}(Q, K, V) headi=Attention(Q,K,V)

2. 多查询注意力(MQA)

图示:

Input --> [Shared Keys & Values]--> [Attention Head 1]--> [Attention Head 2]--> [Attention Head 3]--> ...--> [Concatenate] --> Output

公式:
Output = Concat ( head 1 , head 2 , … , head N ) \text{Output} = \text{Concat}(\text{head}_1, \text{head}_2, \ldots, \text{head}_N) Output=Concat(head1,head2,,headN)
head i = Attention ( Q , K shared , V shared ) \text{head}_i = \text{Attention}(Q, K_{\text{shared}}, V_{\text{shared}}) headi=Attention(Q,Kshared,Vshared)

3. 分组查询注意力(GQA)

图示:

Input --> [Attention Group 1]--> [Attention Group 2]--> ...--> [Concatenate] --> Output

公式:
Output = Concat ( group 1 , group 2 , … , group M ) \text{Output} = \text{Concat}(\text{group}_1, \text{group}_2, \ldots, \text{group}_M) Output=Concat(group1,group2,,groupM)
group j = Attention ( Q group j , K group j , V group j ) \text{group}_j = \text{Attention}(Q_{\text{group}_j}, K_{\text{group}_j}, V_{\text{group}_j}) groupj=Attention(Qgroupj,Kgroupj,Vgroupj)

4. 多头潜在注意力(MLA)

图示:

Input --> [Compressed Keys & Values]--> [Attention Head 1]--> [Attention Head 2]--> [Attention Head 3]--> ...--> [Concatenate] --> Output

公式:
Output = Concat ( head 1 , head 2 , … , head N ) \text{Output} = \text{Concat}(\text{head}_1, \text{head}_2, \ldots, \text{head}_N) Output=Concat(head1,head2,,headN)
head i = Attention ( Q , K compressed , V compressed ) \text{head}_i = \text{Attention}(Q, K_{\text{compressed}}, V_{\text{compressed}}) headi=Attention(Q,Kcompressed,Vcompressed)

低秩键值联合压缩公式:

K compressed = U K ⋅ S K ⋅ V K T K_{\text{compressed}} = U_K \cdot S_K \cdot V_K^T Kcompressed=UKSKVKT
V compressed = U V ⋅ S V ⋅ V V T V_{\text{compressed}} = U_V \cdot S_V \cdot V_V^T Vcompressed=UVSVVVT

图示概述

  1. MHA: 每个头独立操作,最终结果拼接。
  2. MQA: 多个头共享键和值,只计算一次查询,减少计算量。
  3. GQA: 查询分组,每组共享键和值,进一步减少计算量。
  4. MLA: 键和值进行压缩,减少内存和计算需求。

这些方法通过不同的策略优化注意力机制,提高了计算效率,降低了内存消耗,使Transformer模型在实际应用中更加高效。

相关文章:

【注意力MHA,MQA,GQA,MLA】

注意力机制优化简明图解 1. 多头注意力(MHA) 图示: Input --> [Attention Head 1]--> [Attention Head 2]--> [Attention Head 3]--> ...--> [Attention Head N]--> [Concatenate] --> Output公式: Outpu…...

《从零开始做个摸鱼小网站! · 序》灵感来源

序 大家好呀,我是summo,这次来写写我在上班空闲(摸鱼)的时候做的一个小网站的事。去年阿里云不是推出了个活动嘛,2核2G的云服务器一年只要99块钱,懂行的人应该知道这个价格在业界已经是非常良心了,虽然优惠只有一年&a…...

计算机基础(Windows 10+Office 2016)教程 —— 第5章 文档编辑软件Word 2016(上)

文档编辑软件Word 2016 5.1 Word 2016入门5.1.1 Word 2016 简介5.1.2 Word 2016 的启动5.1.3 Word 2016 的窗口组成5.1.4 Word 2016 的视图方式5.1.5 Word 2016 的文档操作5.1.6 Word 2016 的退出 5.2 Word 2016的文本编辑5.2.1 输入文本5.2.3 插入与删除文本5.2.4 复制与移动文…...

短视频矩阵管理系统源码:实现短视频内容全面布局

随着移动互联网的普及,短视频应用逐渐成为人们获取信息、娱乐休闲的重要途径。为了满足用户多样化需求,实现短视频内容的全面布局,短视频矩阵管理系统应运而生。本文将详细介绍短视频矩阵管理系统的源码实现,帮助您更好地理解并应…...

系统设计中15 个最重要的权衡

系统设计的第一法则:一切都与权衡有关。 在设计系统时,我们需要决定要包含哪些功能以及要忽略哪些功能。每次我们做这个决定时,我们都在进行权衡。在本文中,我们将探讨系统设计中遇到的15个最常见的权衡问题,并使用实…...

12年外贸实战经验,一定对你有帮助!

更多外贸干货及开发客户的方法,尽在微信【千千外贸干货】 NO1 客户总是抱怨价格太高,我常以我们产品质量过硬作为回应。但自从我进入贸易公司后,才真正意识到,在商业世界里,价格才是王道。 NO2 如果顾客提出要去工厂检…...

Linux---进程(3)---进程状态

目录 进程排队 进程状态 运行状态 阻塞状态 挂起状态 Linux内核具体进程状态 浅度睡眠状态 运行状态 深度睡眠状态 暂停状态 可被追踪的暂停状态 终止状态 僵尸状态 进程排队 进程不是一直在运行的,进程放在了CPU上,也不是一直运行的。 进程…...

Drools规则引擎实现停车计费

业务规则: 20:00至次日7时不收费白天7:00-20:00每小时5元,每半个小时计费一次进场30分钟内不收费,但计入时间每天最高收费50元 测试项目搭建 pom<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/…...

【python虚拟环境】安装第三方包失败/failed with error code1

问题&#xff1a; 今天新建了一个项目&#xff0c;默认的虚拟环境pip包版本是19.0.3&#xff0c;太低了。安装第三方包的时候一直超时 解决方案: 更新pip&#xff1a; python -m pip install -U --force-reinstall pip然后就可以正常pip install包了 清华镜像源&#xff1…...

DiffusionModel-latent diffusion,VAE,U-Net,Text-encoder

Diffusers StableDdiffusion 参考: Stable Diffusion原理详解&#xff08;附代码实现) Latent Diffusion 自编码器&#xff08;Variational Autoencoder, VAE&#xff09;&#xff1a; 自编码器是一种无监督学习的神经网络&#xff0c;用于学习数据的有效表示或编码。在稳定扩…...

C# form的移植工作

前言&#xff1a; 目标&#xff0c;将一个项目的form移植到新的工程下&#xff0c;且能够正确编译执行&#xff1a; 1 Copy form的两个文件到新工程下&#xff1a; 比如笔者的logo form 2 修改命名空间&#xff1a; 然后&#xff0c;找到新项目的主程序&#xff1a; 的命名…...

linux防火墙相关命令

防火墙启动关闭 启动防火墙 systemctl start firewalld 关闭防火墙 systemctl stop firewalld 查看状态 systemctl status firewalld 开放或限制端口 开放端口 firewall-cmd --zonepublic --add-port22/tcp --permanent 重新载入一下防火墙设置&#xff0c;使设置生效…...

实习中学到的一点计算机知识(MP4在企业微信打不开?)

我在实习中&#xff0c;常有同事向我反馈说我在微信发的视频格式打不开。这就导致我还要一帧帧的盯着某一个时刻来截图&#xff0c;今天查了一下资料尝试修改视频后缀来解决视频的播放问题。 在网上下载mp4的格式&#xff0c;在本地都能播放&#xff0c;怎么可能发上企业微信就…...

ElasticSearch入门语法基础知识

1、创建测试索引 PUT /test_index_person {"settings": {"analysis": {"analyzer": {"ik_analyzer": {"type": "custom","tokenizer": "ik_smart"}}}},"mappings": {"proper…...

【C++】C++应用案例-dolphin海豚记账本

目录 一、整体介绍 1.1、需求和目标 1.2、整体功能描述 二、页面及功能描述 2.1 主菜单 2.2 记账菜单 2.3 查询菜单 2.4 退出功能 三、流程设计 3.1 主流程 3.2 记账操作流程 3.3 查询操作流程 四、代码设计 4.1 核心思路 4.2 项目文件分类设计 4.2.1 头文件 …...

Matlab数据处理学习笔记

1 &#xff1a;数据清洗 注&#xff1a;数据读取 &#xff08;1&#xff09;读取工作表 % 指定要读取的工作表 filename sales_data.xlsx; sheetName Sheet2; % 或者使用工作表编号&#xff0c;例如&#xff1a;sheetNumber 2;% 读取指定工作表的数据 data readtable(fi…...

浏览器中的同源策略、CORS 以及相关的 Fetch API 使用

前言 笔者对前端 Web 技术的认真学习&#xff0c;其实开始于与 Fetch API 的邂逅。当时觉得 fetch() 的设计很不错&#xff0c;也很希望能够请求其它网站下的数据并作处理和展示。学习过程中 HTML 和 CSS 都还好说&#xff0c;由于几乎没有 Web 技术的基础&#xff0c;学习 Fe…...

爬虫 APP 逆向 ---> 粉笔考研

环境&#xff1a; 粉笔考研 v6.3.15&#xff1a;https://www.wandoujia.com/apps/1220941/history_v6031500雷电9 模拟器&#xff1a;https://www.ldmnq.com/安装 magisk&#xff1a;https://blog.csdn.net/Ruaki/article/details/135580772安装 Dia 插件 (作用&#xff1a;禁…...

2024河南萌新联赛第(三)场 河南大学

B. 正则表达式 题目&#xff1a; https://ac.nowcoder.com/acm/contest/87865/B 给出n个地址&#xff0c;每个地址的形式为x.x.x.x&#xff0c;找四个x都满足x>0&&x<255的个数 思路&#xff1a; 首先定义四个数组和一个字符&#xff0c;然后按题目所给的形式…...

回溯法---分割回文串

题目&#xff1a;给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是回文串。返回 s 所有可能的分割方案。 思路&#xff1a; 第一步&#xff1a;确定参数与返回值。参数为字符串s&#xff0c;分割起始下标startIndex&#xff0c;无返回值 第二…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...