【AI-12】浅显易懂地说一下损失函数
什么是损失函数?
咱们可以把损失函数想象成一个衡量你做的事情“好不好”的尺子。
比如说你在预测明天的天气,你给出的预测结果和实际的天气情况之间会有差别。损失函数就是用来计算这个差别有多大的。
如果你的预测结果和实际情况非常接近,损失函数的值就会很小,说明你做得很棒;但如果你的预测结果和实际情况相差很大,损失函数的值就会很大,意味着你做得不太好。
举个简单的例子,你在猜一个物品的价格,你猜的价格和实际价格的差距就是损失。而损失函数就是计算这个差距的具体方法。
再比如,你在训练一个识别猫和狗的图像模型,如果模型把猫识别成了狗,损失函数就会给出一个比较大的值,告诉你这次识别错得比较离谱,需要调整模型的参数来改进。
总之,损失函数就是用来告诉我们模型的预测结果离正确答案有多远,从而帮助我们改进模型,让它的预测越来越准确。
咱们把损失函数想象成你玩游戏时候的得分。
比如说你在玩投篮游戏,每次投球的结果和理想中的完美投篮之间的差距,就可以用一个数字来表示,这个数字就是损失函数的值。
如果你的球投得很准,和理想情况差距小,损失函数的值就小,说明你表现好;要是投得很偏,差距大,损失函数的值就大,意味着你表现差。
再比如猜谜语,你猜的答案和正确答案相差很多,损失函数就给出一个大的值;要是猜得很接近,损失函数的值就小。
在机器学习里,损失函数就是用来衡量模型给出的预测结果和真实结果之间的差距的。差距小,损失函数值就小,说明模型好;差距大,损失函数值就大,模型就需要改进。
如何选择适合的损失函数?
选择适合的损失函数就像是选一双合脚的鞋子,得根据具体的情况来。
首先,看看你的任务是什么。如果是做分类问题(二分类问题和多分类问题),比如判断是猫还是狗,像交叉熵损失函数可能就比较合适。它能很好地衡量分类的准确性。
要是做回归问题,比如预测房价,**均方误差(回归问题,用于预测连续值)或者平均绝对误差损失函数(回归问题,尤其是在存在异常值的情况下)**可能更有用,因为它们能反映预测值和真实值的数值差距。
然后考虑数据的特点。如果数据中有很多异常值,平均绝对误差可能更能抵抗这些异常值的影响。
再想想模型的复杂度。简单的模型可能更适合简单的损失函数,复杂的模型也许能应对更复杂的损失函数。
还要看对结果的侧重点。如果更在乎大的错误,那可能某种强调大误差的损失函数就更好。
比如说,在一个对预测准确性要求极高的医学诊断任务中,可能会选择对错误非常敏感的交叉熵损失函数。而在一个对少量异常数据不太敏感的房价预测任务里,均方误差损失函数就可能够用了。
相关文章:
【AI-12】浅显易懂地说一下损失函数
什么是损失函数? 咱们可以把损失函数想象成一个衡量你做的事情“好不好”的尺子。 比如说你在预测明天的天气,你给出的预测结果和实际的天气情况之间会有差别。损失函数就是用来计算这个差别有多大的。 如果你的预测结果和实际情况非常接近,…...
Python和java中super的使用用法(有点小语法上的差距,老忘就在这里置顶了)
文章目录 1 在 Java 中:2 在 Python 中: 在 Java 和 Python 中,子类调用父类方法的语法略有不同: 1 在 Java 中: 使用 super 关键字:在子类中,可以使用 super 关键字来调用父类的方法。super …...
在 QML 中使用 C++ 类和对象
1.实现 C 类,从 QObject 或 QObject 的派生类继承 类中第一行添加 Q_OBJECT 宏 2.修饰成员函数或属性 Q_INVOKABLE 宏用来定义可通过元对象系统访问的方法 Q_PROPERTY 宏用来定义可通过元对象系统访问的属性 信号或者槽,都可以直接在 QML 中访问 3. 在…...
什么是接口?
在前后端开发的语境中,接口(Interface)是一个非常重要的概念,它充当了前端(通常是浏览器端或移动端应用)与后端(通常是服务器端的应用程序)之间进行数据交换的桥梁。接口定义了双方交…...
传统自然语言处理(NLP)与大规模语言模型(LLM)详解
自然语言处理(NLP)和大规模语言模型(LLM)是理解和生成人类语言的两种主要方法。本文将介绍传统NLP和LLM的介绍、运行步骤以及它们之间的比较,帮助新手了解这两个领域的基础知识。 传统自然语言处理(NLP&…...
实现Obsidian PC端和手机端(安卓)同步
步骤 1:在PC端设置Obsidian 安装Obsidian和Git:确保你的PC上已经安装了Obsidian和Git。你可以从Obsidian官网和Git官网下载并安装。 克隆GitHub代码库:在PC上打开命令行(例如Windows的命令提示符或Mac/Linux的终端)&a…...
基于大模型的 Agent 进行任务规划的10种方式
基于大模型的 Agent 基本组成应该包含规划(planning),工具(Tools),执行(Action),和记忆(Memory)四个方面,本节将从 Agent 的概念、ReAct 框架、示例、以及一些论文思路来具体聊下任务规划的话题,…...
计算机网络01
文章目录 浏览器输入URL后发生了什么?Linux 系统是如何收发网络包的?Linux 网络协议栈Linux 接收网络包的流程Linux 发送网络包的流程 浏览器输入URL后发生了什么? URL解析 当在浏览器中输入URL后,浏览器首先对拿到的URL进行识别…...
基于SpringBoot微服务架构下前后端分离的MVVM模型浅析
基于SpringBoot微服务架构下前后端分离的MVVM模型浅析 “A Brief Analysis of MVVM Model in Front-end and Back-end Separation based on Spring Boot Microservices Architecture” 完整下载链接:基于SpringBoot微服务架构下前后端分离的MVVM模型浅析 文章目录 基于Spring…...
44444444444
4444444444444444...
数据结构与算法-二分搜索树节点的查找
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 文章目录 引言一、二分搜…...
C++|设计模式(七)|⭐️观察者模式与发布/订阅模式,你分得清楚吗
本文内容来源于B站: 【「观察者模式」与「发布/订阅模式」,你分得清楚吗?】 文章目录 观察者模式(Observer Pattern)的代码优化观察者模式 与 发布订阅模式 他们是一样的吗?发布订阅模式总结 我们想象这样一…...
计算机毕业设计选题推荐-学院教学工作量统计系统-Java/Python项目实战
✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...
人机交互不仅仅是科技问题
人机交互不仅仅局限于物理和数理科学的应用,还涉及到更广泛的管理、文理、哲学、艺术、伦理以及法律等领域。下面这些领域在人机协同和智能系统应用中扮演着重要角色: 智能系统在企业管理、资源分配、决策支持等方面的应用,可以帮助管理者优化…...
Lua Debug.GetInfo
在 Lua 中,debug.getinfo 函数的第一个参数指定了要获取信息的函数的级别。这个级别是一个整数,表示调用栈的深度。以下是一些常见的级别和它们的含义: - 1:当前函数(即调用 debug.getinfo 的函数)。 - 2&a…...
每日刷题(最短路、图论)
目录 游戏 思路 代码 魔法 思路 代码 P1364 医院设置 思路 代码 P1144 最短路计数 思路 代码 游戏 I-游戏_河南萌新联赛2024第(三)场:河南大学 (nowcoder.com) 思路 利用dijkstra去寻找起点到其余所有点的最短路径,当…...
远程服务器训练网络之tensorboard可视化
cd到tensorboard events存储的位置 启动tensorboard tensorboard --logdir./ 得到运行结果: TensorBoard 1.13.1 at http://work:6006 (Press CTRLC to quit) 创建tunnel映射到本地,在本地ssh,最好使用公网地址 ssh -N -L 8080:localhost:60…...
MySQL锁详解
锁是计算机在执行多线程或线程时用于并发访问同一共享资源时的同步机制,MySQL中的锁是在服务器层或者存储引擎层实现的,保证了数据访问的一致性与有效性。 MySQL锁: 按粒度分为:全局锁、表级锁、页级锁、行级锁。按模式分为&…...
面试问题记录:
1,hashmap扩容的时候,链表超长但不满足转变成红黑树的条件时: 【HashMap】链表和红黑树互相转换的几种情况和数组的扩容机制_hashmap红黑树转链表条件-CSDN博客 2,cglib与proxy区别 JDK 动态代理和 CGLIB 动态代理对比_动态代理…...
vue如何在组件中监听路由参数的变化
使用 watch 监听 $route 对象 的变化,从而捕捉路由参数的变化 beforeRouteUpdate 导航守卫 当前组件路由更新时调用 beforeRouteUpdate 钩子只在组件被复用时调用,即当组件实例仍然存在时。如果组件是完全重新创建的,那么应该使用 beforeR…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
