昇思25天学习打卡营第1天|快速入门
目录
- 昇思MindSpore介绍
- MindSpore的API来快速实现一个简单的深度学习模型
- 通过资料更深入的了解昇思MindSpore
昇思MindSpore介绍
今天有幸学习了昇思MindSpore,让我们来简单的了解一下它
- 昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。
- 其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。
MindSpore的API来快速实现一个简单的深度学习模型
%%capture captured_output
# 实验环境已经预装了mindspore==2.3.0rc1,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
通过资料更深入的了解昇思MindSpore
下面是我简单的做了一个代码的编写
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wdGNP22C-1722266348360)(https://i-blog.csdnimg.cn/direct/0f8d00d589a1493eaba0c60461a7c61f.png)]
我也在网上查看了一些资料去了解它
- 昇思MindSpore是由华为于2019年8月推出的新一代全场景AI框架,并于2020年3月28日正式开源
- 易开发:提供友好的API接口,降低AI开发者的开发门槛。
- 调试难度低:调试过程相对简单,提高开发效率。
- 动静态图统一:支持动态图和静态图统一的编码方式,用户可根据需要灵活切换,无需开发多套代码。
- 高效执行:通过优化算法和硬件资源利用,提高计算效率。
- 全场景统一部署:支持云、边缘、端侧场景:满足不同场景下的AI应用需求。
统一架构:基于“端-边-云”统一架构,简化企业级部署和安全可信方面的挑战。
相关文章:
昇思25天学习打卡营第1天|快速入门
目录 昇思MindSpore介绍MindSpore的API来快速实现一个简单的深度学习模型通过资料更深入的了解昇思MindSpore 昇思MindSpore介绍 今天有幸学习了昇思MindSpore,让我们来简单的了解一下它 昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行…...
LinkedList 实现 LRU 缓存
LRU(Least Recently Used,最近最少使用)缓存是一种缓存淘汰策略,用于在缓存满时淘汰最久未使用的元素。 关键: 缓存选什么结构? 怎么实现访问顺序? import java.util.*;public class LRUCac…...
ubuntu安装workon
pip install virtualenvpip install virtualenvwrapper配置virtualenvwrapper。在你的shell配置文件(比如.bashrc,.bash_profile或.zshrc)中添加以下内容:export WORKON_HOME$HOME/.virtualenvs export VIRTUALENVWRAPPER_PYTHON/…...
(面试必看!)锁策略
文章导读 引言考点一、重量级锁 VS 轻量级锁1、定义与原理2、主要区别3、适用场景 考点二、乐观锁 VS 悲观锁1、悲观锁(Pessimistic Locking)2、乐观锁(Optimistic Locking)3、总结 考点三、读写锁1、读写锁的特性2、读写锁的实现…...

RAGflow:开源AI框架的创新与应用
在当今科技飞速发展的时代,人工智能(AI)已经成为各行各业不可或缺的一部分。特别是在文档处理和数据分析领域,AI的应用更是无处不在。今天,我要向大家介绍一个开源的AI框架引擎——RAGflow。它能够在深度文档理解方面执…...
AI的学习明确路径
1.不要一开始学习数学。 首先,学习python的语法和工具包。 python的工具包有:numpy,pandas,matlap,sciklt-learn. 然后,学习机械学习算法,学习1.树模型,随机森林 。 2.神经网络。 上kaggle中,找人家的经…...

【C++】巧用缺省参数与函数重载:提升编程效率的秘密武器
C语法相关知识点可以通过点击以下链接进行学习一起加油!命名空间 本章将分享缺省参数与函数重载相关知识,为了更加深入学习C打下了坚实的基础。本章重点在于缺省参数与函数重载使用前提与注意事项 🌈个人主页:是店小二呀 …...
mysql排查死锁的几个查询sql
SHOW PROCESSLIST; select * from information_schema.INNODB_TRX; select * from information_schema.INNODB_LOCKS; select * from information_schema.INNODB_LOCK_WAITS;...

快速部署私有化大模型 毕昇(使用docker-compose方式)
docker安装 1. # Linux系统安装docker,以CentOS/RHEL为例,其他操作系统请参考docker官方安装方法 # 如果已经安装过docker 期望重装,先卸载 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \d…...

B端:导航条就框架提供的默认样式吗?非也,看过来。
导航条不一定必须使用框架提供的默认样式,你可以根据项目需求和设计风格进行自定义。通过使用框架提供的自定义选项、CSS样式覆盖、自行设计或者使用其他UI库或组件,你可以实现独特且符合需求的导航条样式。 下面发一些参考给友友们,可以让设…...
idea的git与SVN切换
1、选择setting->Version Control,新增或者编辑,选择目录,使用git或者svn管理 2、选择项目中的vcs.xml,打开选择要用的,注释掉不用的版本即可...

互联网家政小程序,为大众带来高效、便捷的服务
随着人口老龄化的严重和社会生活节奏的加快,大众对家政服务的需求日益增加,家政行业的市场规模逐渐扩大! 在科技的推动下,家政行业开始向数字化发展,“互联网家政”的模式推动了市场的快速发展。互联网家政小程序借助…...
【常用库】【pytorch】基本部件
基本元件 1. 卷积 2. batchnorm loss函数 torch.nn.MSELoss() >>> a torch.rand(3) >>> a tensor([0.2161, 0.2227, 0.9175]) >>> b torch.rand(3) >>> b tensor([0.6976, 0.9149, 0.4918]) >>> mse torch.nn.MSELOSS() &…...
深入Scrapy框架:掌握其工作流程
深入Scrapy框架:掌握其工作流程 引言 作为一名资深的Python程序员,我对各种数据采集工具有着深刻的理解。Scrapy,作为一个上场率极高的爬虫框架,以其高效、灵活和强大的特性,成为数据采集领域的不二选择。在本文中&a…...

从零开始学习机器学习,掌握AI未来的关键!
从零开始学习机器学习 1. 介绍1.1 人工智能(AI)概述1.2 机器学习在人工智能中的应用1.3 机器学习基础概念 2. 监督学习2.1 什么是监督学习2.2 回归分析2.3 分类问题2.4 模型评估和选择 3. 无监督学习3.1 什么是无监督学习3.2 聚类算法3.3 降维技术 4. 深…...
CI/CD(持续集成/持续部署)
CI/CD(持续集成/持续部署)是软件开发过程中的一种方法,旨在提高开发效率和软件质量。以下是对CI/CD的具体解释: 1.持续集成(Continuous Integration,CI): 概念:开发人员将代码频繁地合并到主分支中,每次提交都会触发自动化构建和测试过程。目的:及时发现和修复集成…...

实现字母的大小写转换。多组输入输出(c语言)
1.我们先输入字母(用getchar的函数),判断是不是字母,我们可以用a<tmp<z或者A<tmp<Z,注意:小写转换大写用tmp-32,大写转换小写用tmp32.. #include<stdio.h> int main() {int a 0;while …...
2024华为OD机试真题-最小矩阵宽度Python-C卷D卷-200分
2024华为OD机试题库-(C卷+D卷)-(JAVA、Python、C++) 题目描述 给定一个矩阵,包含 N * M 个整数,和一个包含 K 个整数的数组。 现在要求在这个矩阵中找一个宽度最小的子矩阵,要求子矩阵包含数组中所有的整数。 输入描述 第一行输入两个正整数 N,M,表示矩阵大小。 接下来 N …...

【Vue3】标签的 ref 属性
【Vue3】标签的 ref 属性 背景简介开发环境开发步骤及源码 背景 随着年龄的增长,很多曾经烂熟于心的技术原理已被岁月摩擦得愈发模糊起来,技术出身的人总是很难放下一些执念,遂将这些知识整理成文,以纪念曾经努力学习奋斗的日子。…...

llama-factory 系列教程 (六),linux shell 脚本自动实现批量大模型的训练、部署与评估
背景 最近在做大模型微调训练的评估,每次都要手动训练大模型,手动评估。 发现这样太浪费时间了,于是就尝试着使用linux shell 脚本,利用 for 循环自动实现大模型的训练、部署与评估。 实验:在不同的文本分类数据集尺…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...

【若依】框架项目部署笔记
参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作: 压缩包下载:http://download.redis.io/releases 1. 上传压缩包,并进入压缩包所在目录,解压到目标…...
跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践
在电商行业蓬勃发展的当下,多平台运营已成为众多商家的必然选择。然而,不同电商平台在商品数据接口方面存在差异,导致商家在跨平台运营时面临诸多挑战,如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...