可视化目标检测算法推理部署(一)Gradio的UI设计
引言
在先前RT-DETR模型的学习过程中,博主自己使用Flask框架搭建了一个用于模型推理的小案例:
Flask+RT-DETR模型推理
在这个过程中,博主需要学习Flask、HTML等相关内容,并且博主做出的页面还很丑,那么,是否可以有一个工具可以帮助我们完成这个可视化的过程呢?今天,便来学习一个AI模型可视化工具包Gradio。
Gradio工具包
Gradio 是一个用于快速创建和共享机器学习模型的 Python 库。它允许开发者通过简单的代码定义输入和输出组件,创建一个 Web 界面,用户可以通过该界面进行机器学习模型的交互。Gradio 支持多种输入和输出类型,包括文本、视频、文件、滑块、单选、收听等。
首先是Gradio的安装条件
pip install gradio #安装,python大于等于3.8。
Gradio组件列表
Gradio 提供了多种组件,用于创建交互式界面。
gr.Interface:用来构建可视化界面。
gr.Image:用于图像输入和输出。
gr.Textbox:用于文本框输入和输出。
gr.DataFrame:用于数据框输入和输出。
gr.Dropdown:用于下拉选项输入。
gr.Number:用于数字输入和输出。
gr.Markdown:用于Markdown输入和输出。
gr.Files:用于文件输入和输出。
cols :指定输入和输出组件的列数
rows :指定输入和输出组件的行数
inputs :指定输入组件的位置和大小
outputs :指定输出组件的位置和大小
gr.Button:用于创建按钮,可以绑定点击事件。
gr.Checkbox:用于创建我们的。
gr.Radio:用于创建单选按钮组。
gr.Slider:用于创建滑块。
gr.Audio:用于音频输入和输出。
gr.Video:用于视频输入和输出。
gr.ColorPicker:用于颜色选择。
gr.File:用于文件上传。
gr.Model3D:用于3D模型展示。
gr.Plot:用于制作图表。
gr.HTML:用于嵌入HTML内容。
gr.JSON:用于 JSON 数据的输入和输出
事实上,该组件的使用十分简单,只需要确定输入、输出,页面便会帮你自动生成
文本输入与输出
文本输入 (Textbox)
import gradio as gr
def greet(name):return f"Hello, {name}!"
demo = gr.Interface(fn=greet, inputs=gr.Textbox(lines=2, placeholder="Enter your name here..."), outputs="text")
demo.launch()#执行
文本输出 (Textbox)
import gradio as gr
def echo(text):return textdemo = gr.Interface(fn=echo, inputs="text", outputs=gr.Textbox(label="Echoed Text"))
demo.launch()
由上可知,Gradio 可以包装几乎任何 Python 函数为易于使用的用户界面。其中,其构建页面使用的便是Interface类
Interface类通过以下三个参数进行初始化:
- fn:包装的函数
- inputs:输入组件类型,(例如:“text”、"image)
- ouputs:输出组件类型,(例如:“text”、"image)
通过这三个参数,我们可以快速创建一个接口并发布他们。
最常用的基础模块构成:
应用界面:gr.Interface(简易场景), gr.Blocks(定制化场景
输入输出:gr.Image(图像),gr.Textbox(文本框), gr.DataFrame(数据框), gr.Dropdown(下拉选项), gr.Number(数字),
gr.Markdown, gr.Files
控制组件:gr.Button(按钮) 布局组件:gr.Tab(标签页),
gr.Row(行布局), gr.Column(列布局)
图像输入和输出
图像输入 (Image)
import gradio as gr
def process_image(image):# 这里可以添加图像处理逻辑return image
demo = gr.Interface(fn=process_image, inputs=gr.Image(type="pil"), outputs="image")
demo.launch()
图像输出 (Image)
import gradio as gr
from PIL import Image
def generate_image():img = Image.new("RGB", (100, 100), color="red")return img
demo = gr.Interface(fn=generate_image, inputs=None, outputs=gr.Image(type="pil"))
demo.launch()
由于没有input,点击Generate后生成红色画布
其余的也如法炮制即可
Gradio案例
了解了gradio的基础用法,我们来看看如何实现一些小案例:
多组件UI设计
上面的用法中介绍了各个组件的单独用法,那么,如果我们该如何设计多组件UI呢?
如下,有三个输入组件,两个输出组件组成
import gradio as gr
def greet(name, is_morning, temperature):# salutation表示致意、问候salutation = "Good morning" if is_morning else "Good evening"greeting = f"{salutation} {name}. It is {temperature} degrees today"# 摄氏温度 = (华氏温度 – 32) ÷ 1.8celsius = (temperature - 32) * 5 / 9return greeting, round(celsius, 2)demo = gr.Interface(fn=greet,inputs=["text", "checkbox", gr.Slider(0, 100,label="华氏温度")],outputs=["text", "number"],
)
demo.launch(server_port=30001)
多任务UI设计
当我们有多个任务时,比如目标检、分类或者语义分割,我们需要设计多Tag选项卡,此时设计如下:
import gradio as gr
#app 1
def user_greeting(name):return "Hi! " + name + " Welcome !"#app 2
def user_help(value):return f"you pick {value} "def tags3(img):return img# tags1的输入、输出,以及对应处理函数
app1 = gr.Interface(fn = user_greeting, inputs="text", outputs="text")
# tags1的输入、输出,以及对应处理函数
app2 = gr.Interface(fn = user_help, inputs="slider", outputs="text")
# tags1的输入、输出,以及对应处理函数
app3 = gr.Interface(fn = tags3, inputs="image", outputs="image")demo = gr.TabbedInterface([app1, app2,app3],tab_names=["第一个界面", "第二个界面","tags3_图像"],title="多选项卡demo"
)
demo.launch()
自定义组件
自定制组件:Blocks构建应用
相比Interface,Blocks提供了一个低级别的API,用于设计具有更灵活布局和数据流的网络应用。Blocks允许控制组件在页面上出现的位置,处理复杂的数据流(例如,输出可以作为其他函数的输入),并根据用户交互更新组件的属性可见性。
import gradio as gr
def greet(name):return "Hello " + name + "!"
with gr.Blocks() as demo:#设置输入组件name = gr.Textbox(label="Name")# 设置输出组件output = gr.Textbox(label="Output Box")#设置按钮greet_btn = gr.Button("Greet")#设置按钮点击事件greet_btn.click(fn=greet, inputs=name, outputs=output)
demo.launch()
首先,注意with gr.Blocks() as demo:
子句。Blocks应用程序代码将包含在这个子句中。
接下来是组件。这些是用于Interface
的相同组件。然而,组件不是传递给某个构造函数,而是在with
子句内创建时自动添加到Blocks中。
最后,是click()
事件监听器。事件监听器定义了应用程序内的数据流。在上面的例子中,监听器将两个文本框连接在一起。文本框name
作为输入,文本框output
作为输出到greet方法。这种数据流是在按钮greet_btn
被点击时触发的。与Interface
一样,事件监听器可以接受多个输入或输出。
您还可以使用装饰器附加事件监听器 - 跳过fn参数,并直接分配inputs和outputs:
import gradio as gr
with gr.Blocks() as demo:name = gr.Textbox(label="Name")output = gr.Textbox(label="Output Box")greet_btn = gr.Button("Greet")@greet_btn.click(inputs=name, outputs=output)def greet(name):return "Hello " + name + "!"
demo.launch()
至此,我们已经掌握了Gradio的基础用法,足以应对一些简单的AI模型部署场景。
接下来,便是通过与相应的目标检测模型文件相结合,搭建我们的目标检测案例了。
相关文章:

可视化目标检测算法推理部署(一)Gradio的UI设计
引言 在先前RT-DETR模型的学习过程中,博主自己使用Flask框架搭建了一个用于模型推理的小案例: FlaskRT-DETR模型推理 在这个过程中,博主需要学习Flask、HTML等相关内容,并且博主做出的页面还很丑,那么,是…...

【PyTorch】基于YOLO的多目标检测项目(一)
【PyTorch】基于YOLO的多目标检测项目(一) 【PyTorch】基于YOLO的多目标检测项目(二) 目标检测是对图像中的现有目标进行定位和分类的过程。识别的对象在图像中显示有边界框。一般的目标检测方法有两种:基于区域提议的…...

spring boot 实现 Stream 钉钉事件订阅
1: 参考链接 https://open.dingtalk.com/document/orgapp/develop-stream-mode-push-server 2:钉钉开放平台订阅配置 配置之后运行一下上面提供的链接 里面的main方法,验证通道 3:订阅启动方式 EventListenerThread eventListenerThrea…...

基于 Rough.js 的 Vue 散点图绘制
本文由ScriptEcho平台提供技术支持 项目地址:传送门 基于 Rough.js 的 Vue 散点图绘制 应用场景 本代码展示了如何使用 Rough.js 库在 Vue 应用程序中绘制散点图。Rough.js 是一个轻量级 JavaScript 库,用于创建具有手绘风格的可视化效果。散点图是一…...
【c++】用c++指针传递来模拟“靶向治疗”
一:源码: #include <iostream>void targetedTherapy(bool* flag) {if (*flag == false) {*flag = true;} }int main() {//代表一系列癌细胞//true为健康细胞 false为癌变细胞bool cancerCell[7] = {true, false, true, true, true, true, false};for (int i = 0; i &…...

如何开启idea中的断言功能?
目录 一、什么是断言? 二、Java断言的语法 三、开启断言 一、什么是断言? 断言(assert)是 Java 中的一条语句,一种在程序中的逻辑(如一个结果为真或假的逻辑判断式),目的是验证软…...

大模型之语言大模型技术
本文作为大模型综述第二篇,介绍语言大模型基本技术。 近年来,在 Transformer 架构基础上构建的预训练语言模型为自然语言处理领域带来了一系列突破式进展,成为人工智能主流技术范式。预训练语言模型采用“预训练+微调”方法,主要分为两步: 1)将模型在大规模无标注数据上…...
浮点数例外 (核心已转储) 的问题记录
一般这种问题,是程序运行过程中出现浮点数运算错误导致的程序崩溃 浮点异常可能由以下几个原因引起: 除以零:当程序中出现除以零的操作时,会触发浮点异常。例如,当一个数除以0时,会导致浮点异常。数值溢出…...
Vite项目中根据不同打包命令配置不同的后端接口地址,proxy解决跨域
在vite.config.ts同级目录添加两个文件 .env.development #开发环境 VITE_APP_ENV developmentVITE_APP_BASE_API .env.production #生产配置 VITE_APP_ENV productionVITE_APP_BASE_API https://www.bdjw.work代码中使用路径 const request axios.create({baseURL: i…...

Java新手启航:JDK 21 版本安装,开启编程之行
在Java开发前,JDK是必不可少的环境,接下来,让我们一起完成JDK 21版本的下载和安装! 种一棵树最好的时间是10年前,其次就是现在,加油! …...

Redis学习[5] ——Redis过期删除和内存淘汰
六、Redis过期键值删除 6.1 Redis的过期键值删除策略 6.1.1 什么是过期键值删除? Redis中是可以对key设置过期时间的,所以需要有相应的机制将已过期的键值对删除,也就是**过期键值删除策略。Redis会用一个过期字典(expires dic…...

书生大模型学习笔记 - Python
Python实现wordcount 请实现一个wordcount函数,统计英文字符串中每个单词出现的次数。返回一个字典,key为单词,value为对应单词出现的次数。 解题思路:首先把字母转小写>然后把单词取出来去除标点>循环单词列表>key已存…...
JavaScript青少年简明教程:面向对象编程入门
JavaScript青少年简明教程:面向对象编程入门 JavaScript 支持多种编程范式(programming paradigms),即支持多种不同的编程风格和方法。 前面介绍的编程方式,主要是面向过程编程(Procedural Programming&am…...

电话号的标准
点击标题下「蓝色微信名」可快速关注 最近碰到个电话号码的问题,除了常规数字,可能还会有国内国际的区号,例如中国,86、086、86,这些好像都见过,但什么是标准的?谁来定义的? 国际电信…...

项目实战_表白墙(升级版)
你能学到什么 表白墙(升级版)Mybatis的一些简单应用 正文 前⾯的案例中, 我们写了表⽩墙, 但是⼀旦服务器重启, 数据就会丢失. 要想数据不丢失, 需要把数据存储在数据库中,接下来咱们借助MyBatis来实现数据库的操作。 数据准备 如果我们…...

创意无限:11个设计圈热议的UI设计灵感网站集锦
无论你是一个经验丰富的UI设计师还是一个新的UI设计师,拥有一些高质量、可靠的UI设计网站灵感库都能加速你的设计过程。借助灵感资源,您可以更快、更有效地启动该项目。与此同时,优秀的UI设计网站也能帮助您探索新的设计解决方案,…...
C# Solidworks二次开发------综合小设计-1
一、内容 本文对前面所提及的相关信息做一些小设计 二、代码 public void Open_File(string FileNmae) {Process.Start("explorer.exe", FileNmae); }public void Connect_Excel() {string connectionString "ProviderMicrosoft.Jet.OLEDB.4.0;Data Source&q…...
nginx rtmp服务器搭建
参考链接:https://blog.csdn.net/bitcsljl/article/details/125826323...

打卡第31天------贪心算法
每天抓紧时间刷题,争取尽快上岸,不能再耽误一分一秒了,2024年已经过去大半年了。这个算法编程题是我的痛点。要尽快弥补。 卡尔在讲算法题的时候,思路比较清晰,通俗易懂,以前看见算法题就害怕,因为啥都不会,看懵了,跟了一个月了,每天坚持刷题,偶尔会回顾思路,也会…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...