当前位置: 首页 > news >正文

Kotlin OpenCV 图像图像50 Haar 级联分类器模型

Kotlin OpenCV 图像图像50 Haar 级联分类器模型

  • 1 OpenCV Haar 级联分类器模型
  • 2 Kotlin OpenCV Haar 测试代码

1 OpenCV Haar 级联分类器模型

Haar级联分类器是一种用于对象检测(如人脸检测)的机器学习算法。它由Paul Viola和Michael Jones在2001年提出,通常用于实时检测,因为它速度快且性能良好。

基本原理解释
Haar特征Haar特征是从图像中提取的简单矩形特征,通过比较相邻区域的像素值来描述图像的局部特征。
常见的Haar特征有边缘特征、线条特征和四边形特征。
每个Haar特征值由区域内像素的加权和计算得到,具体公式为特征值 = 黑色区域像素值总和 - 白色区域像素值总和。
积分图(Integral Image)积分图是一种图像表示方法,方便快速计算矩形区域的像素和。
通过积分图,可以在常数时间内计算任意矩形区域的像素和。
级联分类器(Cascade Classifier)级联分类器由一系列弱分类器(如决策树桩)组成,每个弱分类器使用一个或多个Haar特征进行分类。
弱分类器按顺序排列,每个分类器将图像区域分为正例(目标对象)和负例(非目标对象)。
如果某个区域被认为是负例,则立即停止检测;如果被认为是正例,则继续传递到下一个分类器。
这种级联结构大大提高了检测速度,因为大部分非目标区域在早期就被排除。

OpenCV Haar 级联分类器模型
在这里插入图片描述

文件夹用途特点
lbpcascades包含基于局部二值模式 (Local Binary Patterns, LBP) 的级联分类器文件。LBP 是一种有效的纹理特征描述符,在对象检测中表现良好。计算效率高: LBP 特征计算简单,因此在对象检测时速度较快。
鲁棒性: 对光照变化和其他环境变化有较好的鲁棒性。
常用分类器: 人脸检测等。
hogcascades包含基于方向梯度直方图 (Histogram of Oriented Gradients, HOG) 特征的级联分类器文件。HOG 特征在检测行人等对象时表现良好。特征描述能力强: HOG 特征能够捕捉对象的形状和外观信息。
高检测精度: 尤其在检测行人方面有较高的精度。
haarcascades_cuda包含利用 CUDA 加速的 Haar 特征级联分类器文件。这些分类器利用 GPU 进行加速计算,提高检测速度。 类似于 haarcascades 文件夹中的文件,是加速版本。高性能: 利用 GPU 的并行计算能力,大幅提升检测速度。
需要支持 CUDA 的 GPU: 需要系统安装 CUDA 并支持相应的 GPU 硬件。
haarcascades包含基于 Haar 特征的级联分类器文件。这是 OpenCV 中最常用的对象检测分类器之一。历史悠久: Haar 级联分类器是最早用于人脸检测的算法之一。
计算复杂度适中: 相比 LBP 更复杂,但特征描述能力也更强。
广泛应用: 用于人脸、眼睛、微笑等对象的检测。

haarcascades_cuda 和 haarcascades 文件的主要区别在于它们是否利用 CUDA 加速进行对象检测。

haarcascades/haarcascades_cuda 文件夹用途
haarcascade_eye.xml用于检测人眼。
haarcascade_eye_tree_eyeglasses.xml用于检测戴眼镜的人眼。
haarcascade_frontalcatface.xml用于检测猫的正面脸部。
haarcascade_frontalcatface_extended.xml用于检测猫的正面脸部(扩展版本)。
haarcascade_frontalface_alt.xml用于检测人脸的另一个版本。
haarcascade_frontalface_alt2.xml用于检测人脸的另一个替代版本。
haarcascade_frontalface_alt_tree.xml用于检测人脸的另一个替代版本(树状结构)。
haarcascade_frontalface_default.xml用于检测人脸的默认版本。
haarcascade_fullbody.xml用于检测人体的完整体。
haarcascade_lefteye_2splits.xml用于检测左眼(两部分)。
haarcascade_license_plate_rus_16stages.xml用于检测俄罗斯车牌(16阶段)。
haarcascade_lowerbody.xml用于检测人体的下半身。
haarcascade_profileface.xml用于检测人脸的侧面(侧脸)。
haarcascade_righteye_2splits.xml用于检测右眼(两部分)。
haarcascade_russian_plate_number.xml用于检测俄罗斯车牌号码。
haarcascade_smile.xml用于检测微笑。
haarcascade_upperbody.xml用于检测人体的上半身。
hogcascades文件夹用途
hogcascade_pedestrians.xml用于在图像或视频中检测行人。
lbpcascades文件夹用途
lbpcascade_frontalcatface.xml用于检测猫的正面脸部。
lbpcascade_frontalface.xml用于检测人脸的正面部分。
lbpcascade_frontalface_improved.xml用于检测人脸的正面部分,改进版本。
lbpcascade_profileface.xml用于检测人脸的侧面部分。
lbpcascade_silverware.xml用于检测银器(如刀、叉、勺等餐具)。

2 Kotlin OpenCV Haar 测试代码

package com.xu.com.xu.imageimport org.opencv.core.MatOfRect
import org.opencv.core.Point
import org.opencv.core.Scalar
import org.opencv.highgui.HighGui
import org.opencv.imgcodecs.Imgcodecs
import org.opencv.imgproc.Imgproc
import org.opencv.objdetect.CascadeClassifier
import java.io.File
import java.util.*object FaceDetect {init {val os = System.getProperty("os.name")val type = System.getProperty("sun.arch.data.model")if (os.uppercase(Locale.getDefault()).contains("WINDOWS")) {val lib = if (type.endsWith("64")) {File("lib\\opencv\\x64\\" + System.mapLibraryName("opencv_java4100"))} else {File("lib\\opencv\\x86\\" + System.mapLibraryName("opencv_java4100"))}System.load(lib.absolutePath)}}@JvmStaticfun main(args: Array<String>) {face()}private fun face() {val facebook = CascadeClassifier("lib/opencv/data/haarcascades/haarcascade_frontalface_alt2.xml")val image = Imgcodecs.imread("C:\\Users\\hyacinth\\Desktop\\1.png")val face = MatOfRect()facebook.detectMultiScale(image, face)val reacts = face.toArray()println("匹配到 " + reacts.size + " 个人脸")for (i in reacts.indices) {Imgproc.rectangle(image,Point(reacts[i].x.toDouble(), reacts[i].y.toDouble()),Point((reacts[i].x + reacts[i].width).toDouble(), (reacts[i].y + reacts[i].height).toDouble()),Scalar(0.0, 0.0, 255.0), 2)Imgproc.putText(image,i.toString(),Point(reacts[i].x.toDouble(), reacts[i].y.toDouble()),Imgproc.FONT_HERSHEY_SCRIPT_SIMPLEX,1.0,Scalar(0.0, 0.0, 255.0),2,Imgproc.LINE_AA,false)}HighGui.imshow("人脸识别", image)HighGui.waitKey(0)}}

在这里插入图片描述

相关文章:

Kotlin OpenCV 图像图像50 Haar 级联分类器模型

Kotlin OpenCV 图像图像50 Haar 级联分类器模型 1 OpenCV Haar 级联分类器模型2 Kotlin OpenCV Haar 测试代码 1 OpenCV Haar 级联分类器模型 Haar级联分类器是一种用于对象检测&#xff08;如人脸检测&#xff09;的机器学习算法。它由Paul Viola和Michael Jones在2001年提出…...

嗖嗖移动业务大厅(Java版)

首先对此项目说明一下&#xff0c;我只完成了项目的基本需求&#xff0c;另外增加了一个用户反馈的功能&#xff0c;但是可能项目中间使用嗖嗖这个功能还有一些需要完善的地方&#xff0c;或者还有一些小bug&#xff0c;就当给大家参考一下了&#xff0c;希望谅解。代码我也上传…...

hcia复习笔记

一、OSI 七层模型 应用层&#xff1a;为应用程序提供服务&#xff0c;如文件传输、电子邮件等。 表示层&#xff1a;数据格式转换、加密解密、压缩解压缩。 会话层&#xff1a;建立、维护和管理会话。 传输层&#xff1a;提供端到端的可靠或不可靠的数据传输服务&#xff0…...

pycharm中安装、使用扩展工具,以QT Designer为例

pycharm中安装、使用扩展工具&#xff0c;以QT Designer为例 第一步&#xff0c;下载QT Designer安装包。找到QT Designer.exe所在位置&#xff0c;复制路径 第二步&#xff0c;打开Pycharm&#xff0c;选择Setting&#xff0c;找到扩展工具&#xff08;External Tools&#xf…...

【Rust光年纪】Rust语言实用库汇总:从机器翻译到全文搜索引擎

优秀的Rust语言库探索&#xff1a;机器翻译、音频编解码和全文搜索引擎 前言 Rust语言在近年来迅速崛起&#xff0c;成为了一种备受欢迎的系统级编程语言。随着其生态系统的不断丰富&#xff0c;涌现出了许多优秀的库和工具。本文将重点介绍几个用于Rust语言的重要库&#xf…...

学习笔记 - 二极管的参数与选型

二极管 普通二极管&#xff1a; 1N4148(高频开关二极管) 整流二极管&#xff1a; 1N4007 1A 1000V1N5408 3A 1000V 肖特基二极管 &#xff08;白线边为阴极&#xff09; SS14 SS34 SS54 常见肖特基二极管参数 快恢复二极管 FR107 FR207 FR307 UF4007 可以用快恢复二…...

PMP--冲刺--易混概念

文章目录 十大知识领域一、整合管理项目管理计划与项目文件的区分&#xff1a; 二、范围管理三、进度管理赶工与快速跟进的区分&#xff1a;赶工增加资源&#xff0c;以最小的成本代价来压缩进度工期&#xff1b;快速跟进&#xff0c;将正常情况下按顺序进行的活动或阶段改为至…...

Resolving Maven dependencies

Maven是一种项目管理和构建工具&#xff0c;通常用于Java项目。这个过程包括下载项目所需的所有外部库和插件&#xff0c;并将它们添加到项目的构建路径中。具体来说&#xff0c;它正在处理名为“AAS_byBasyx”的项目或模块的依赖项。这种任务通常在你打开一个新的Maven项目或更…...

【Spring】SSM框架整合Spring和SpringMVC

目录 1.项目结构 2.项目的pom.xml文件 3.spring.xml和springMVC配置文件 4.database.properties和mybatis.xml配置文件 5. 代码编写 6.测试整合结果 1.项目结构 首先创建一个名为ssm_pro的Mavew项目&#xff0c;然后再在主目录和资源目录下&#xff0c;创建如下所示的结…...

优维2024年中思考:大模型赋予新一代运维的“非产品性”启示

近年来&#xff0c;人工智能在各个行业的应用大幅增加&#xff0c;人工智能技术取得重大进步的领域之一是IT运维。 去年四季度&#xff0c;优维科技敏锐地提出“新一代运维核心系统提供商”的战略新定位&#xff0c;决定将“DevOps及运维”回归到“运维”本身&#xff0c;但我…...

【中药网络药理学】筛选细胞衰老和预后相关基因(附分类代码和画图代码)

1、衰老相关基因 从HAGR和msigdb数据获取细胞衰老相关基因&#xff0c;将两者取交集后构建基因蛋白互作网络 HAGR数据库 该库本身提供了下载链接&#xff0c;我在下载后对其进行了清洗 msigdb数据库 以"aging"作为关键词&#xff0c;Search Filters中collection…...

华为的流程体系

缘由 2010年&#xff0c;华为销售额为1850亿元&#xff0c;其中国际市场占65%&#xff0c;净利润238亿元。当时&#xff0c;公司员工达11万人&#xff0c;公司处理合同达5万多个&#xff0c;290万个订单&#xff0c;大量的工作是手工处理&#xff0c;没有统一的流程支持&#…...

算法——长度最小的子数组209 对比代码随想录题解中对于result取值为Integer.MAX_VALUE的思考

具体解题过程可看代码随想录&#xff0c;我主要是对于为什么result也就是子数组和初始化要为Integer.MAX_VALUE有一个疑惑&#xff0c;为什么不是其他值&#xff0c;经过思考后我发现: 情况一&#xff1a;如果result为负数的话是不符合数组长度取值的一个规范的。 情况二&…...

图像处理案例03

HOGSVM数字识别 1 . 步骤2 . 代码 1 . 步骤 读入数据&#xff0c;把数据划分为训练集和测试集用hog提取特征用SVM训练数据测试、评价模型保存模型加载模型&#xff0c;应用模型 2 . 代码 import os import cv2 import sklearn import numpy as np from skimage.feature impo…...

【Kubernetes】k8s集群中kubectl的陈述式资源管理

目录 一.k8s集群资源管理方式分类 1.陈述式资源管理方式 2.声明式资源管理方式 二.陈述式资源管理方法 三.kubectl命令 四.项目生命周期 1.创建 kubectl create命令 2.发布 kubectl expose命令 3.更新 kubectl set 4.回滚 kubectl rollout 5.删除 k…...

串---顺序串实现

顺序串详解 本文档将详细介绍顺序串的基本概念、实现原理及其在 C 语言中的具体应用。通过本指南&#xff0c;读者将了解如何使用顺序串进行各种字符串操作。 1. 什么是顺序串&#xff1f; 顺序串是一种用于存储字符串的数据结构&#xff0c;它使用一组连续的内存空间来保存…...

吴恩达机器学习WEEK2

COURSE1 WEEK2 多维特征 在线性回归中&#xff0c;往往特征不止一个&#xff0c;而是具有多维特征 例如&#xff0c;在预测房价的例子中&#xff0c;我们知道更多的信息&#xff1a; x 1 x_1 x1​&#xff1a;房屋的面积 x 2 x_2 x2​&#xff1a;卧室的数目 x 3 x_3 x3​&a…...

yield and generator in python

首先&#xff0c;假设大家都对于pytyhon的List comprehension的使用有了一定经验&#xff08;它可以用于list&#xff0c;set&#xff0c;和dict哦&#xff09; 不熟悉的参考介绍&#xff1a; Comprehending Python’s Comprehensions – dbader.org generator generator是哦…...

spring原理(自学第六天)

Aware 接口及 InitializingBean 接口 今天将会学到Aware 接口及 InitializingBean 接口 我们可以先了解他们的作用&#xff1a; 1. Aware 接口用于注入一些与容器相关信息, 例如 a. BeanNameAware 注入 bean 的名字 b. BeanFactoryAware 注入…...

案例分享—国外优秀ui设计作品赏析

国外UI设计创意迭出&#xff0c;融合多元文化元素&#xff0c;以极简风搭配动态交互&#xff0c;打造沉浸式体验&#xff0c;色彩运用大胆前卫&#xff0c;引领界面设计新风尚 同时注重用户体验的深度挖掘&#xff0c;通过个性化定制与智能算法结合&#xff0c;让界面不仅美观且…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...