Pandas的30个高频函数使用介绍
Pandas是Python中用于数据分析的一个强大的库,它提供了许多功能丰富的函数。本文介绍其中高频使用的30个函数。

read_csv(): 从CSV文件中读取数据并创建DataFrame对象。
import pandas as pd
df = pd.read_csv('data.csv')
read_excel(): 从Excel文件中读取数据并创建DataFrame对象。
df = pd.read_excel('data.xlsx')
to_excel(): 输出数据并保存在新的excel文件中。
df.to_excel('data_output.xlsx')
head(): 返回前n行数据(默认为5)。
print(df.head(5))
tail(): 返回最后n行数据(默认为5)。
print(df.tail(5))
shape: 返回DataFrame的形状(行数和列数)。
rows, cols = df.shape
print(f"Rows: {rows}, Columns: {cols}")
columns: 返回DataFrame的列名列表。
column_names = df.columns
print(column_names)
index: 返回DataFrame的索引列表。
index_list = df.index
print(index_list)
describe(): 生成描述性统计信息,包括计数、平均值、标准差等。
statistics = df.describe()
print(statistics)
info(): 返回DataFrame的信息摘要,包括索引、列、非空值数量和内存信息。
print(df.info())
dtypes: 返回每列的数据类型。
data_types = df.dtypes
print(data_types)
drop(): 删除指定行或列。
df = df.drop('column_name', axis=1)
sort_values(): 根据指定列的值对DataFrame进行排序。
df_sorted = df.sort_values('column_name')
loc[]: 通过标签选择数据。
df=pd.DataFrame({'Column1': [1,0,0,0,0,0,2,2], 'Column2': [1,1,0,0,0,0,2,2], 'Column3': [0,0,0,1,0,0,2,2], 'Column4': [1,0,0,1,0,0,2,2]})
df.loc[:,'Column2']
iloc[]: 通过整数位置选择数据。
cell_data = df.iloc[1, 2]
at[]: 选择单个元素。
element_value = df.at[1, 'Column4']
iat[]: 选择单个元素。
element_value = df.iat[1, 2]
isnull(): 检查缺失值。
missing_values = df.isnull()
notnull(): 检查非缺失值。
non_missing_values = df.notnull()
fillna(): 填充缺失值。
df_filled = df.fillna(0)
replace(): 替换值。
df_replaced = df.replace(old_value, new_value)
rename(): 重命名列名。
df_renamed = df.rename(columns={'old_name': 'new_name'})
set_index(): 设置索引列。
df_indexed = df.set_index('column_name')
reset_index(): 重置索引。
df_reset = df.reset_index()
groupby(): 根据指定列对数据进行分组。
grouped = df.groupby('column_name')
agg(): 对分组后的数据应用聚合函数。
aggregated = grouped.agg({'column_name': ['sum', 'mean']})
unique(): 查找该列唯一值。
df=pd.DataFrame({'Column1': [1,0,0,0,0,0,2,2], 'Column2': [1,1,0,0,0,0,2,2], 'Column3': [0,0,0,1,0,0,2,2], 'Column4': [1,0,0,1,0,0,2,2]})
list(df['Column1'].unique())#唯一值是0,1,2
concat(): 连接两个或多个DataFrame。
df_concatenated = pd.concat([df1, df2])
merge(): 合并两个DataFrame,根据一个或多个键进行连接。
merged_df = pd.merge(df1, df2, on='key')
apply(): 应用函数至指定行或列。
df['new_column'] = df['column_name'].apply(lambda x: x * 2) # 对列应用函数
以上这些函数覆盖了从数据加载、预处理、转换到分析的各个阶段。Pandas的强大之处在于其函数的灵活性和易用性,使得数据分析工作变得简单高效。
关于Python技术提升
由于文章篇幅有限,文档资料内容较多,需要这些文档的朋友,可以加小助手微信免费获取,【保证100%免费】,中国人不骗中国人。

**(扫码立即免费领取)**
全套Python学习资料分享:
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。



二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,还有环境配置的教程,给大家节省了很多时间。

三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频全套
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。



五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。





如有侵权,请联系删除。
相关文章:
Pandas的30个高频函数使用介绍
Pandas是Python中用于数据分析的一个强大的库,它提供了许多功能丰富的函数。本文介绍其中高频使用的30个函数。 read_csv(): 从CSV文件中读取数据并创建DataFrame对象。 import pandas as pd df pd.read_csv(data.csv) read_excel(): 从Excel文件中读取数据…...
1. protobuf学习
文章目录 1. protobuf介绍1.1 ProtoBuf使用场景说明2. 其他序列化介绍2.1 Json2.1.1 使用Json序列化2.1.2 Json反序列化2.2 其他可选地序列化和反序列化3. protoBuf3.1 protobuf数据类型3.2 protobuf使用步骤3.2.1 定义proto文件3.2.2 编译proto文件3.2.2.1 安装protocol buffe…...
Java面试题:SpringBean的生命周期
SpringBean的生命周期 BeanDefinition Spring容器在进行实例化时,会将xml配置的信息封装成BeanDefinition对象 Spring根据BeanDefinition来创建Bean对象 包含很多属性来描述Bean 包括 beanClassName:bean的类名,通过类名进行反射 initMethodName:初始化方法名称 proper…...
50 IRF检测MAD-BFD
IRF 检测MAD-BFD IRF配置思路 网络括谱图 主 Ten-GigabitEthernet 1/0/49 Ten-GigabitEthernet 1/0/50 Ten-GigabitEthernet 1/0/51 备 Ten-GigabitEthernet 2/0/49 Ten-GigabitEthernet 2/0/50 Ten-GigabitEthernet 2/0/51 1 利用console线进入设备的命令行页…...
SpringSecurity-1(认证和授权+SpringSecurity入门案例+自定义认证+数据库认证)
SpringSecurity 1 初识权限管理1.1 权限管理的概念1.2 权限管理的三个对象1.3 什么是SpringSecurity 2 SpringSecurity第一个入门程序2.1 SpringSecurity需要的依赖2.2 创建web工程2.2.1 使用maven构建web项目2.2.2 配置web.xml2.2.3 创建springSecurity.xml2.2.4 加载springSe…...
Java高级
类变量/静态变量package com.study.static_; 通过static关键词声明,是该类所有对象共享的对象,任何一个该类的对象去访问他的时候,取到的都是相同的词,同样任何一个该类的对象去修改,所修改的也是同一个对象. 如何定义及访问? 遵循相关访问权限 访问修饰符 static 数据类型…...
python实现图像分割算法3
python实现区域增长算法 算法原理基本步骤数学模型Python实现详细解释优缺点应用领域区域增长算法是一种经典的图像分割技术,它的目标是将图像划分为多个互不重叠的区域。该算法通过迭代地合并与种子区域相似的邻域像素来实现分割。区域增长算法通常用于需要精确分割的场景,如…...
解密XXE漏洞:原理剖析、复现与代码审计实战
在网络安全领域,XML外部实体(XXE)漏洞因其隐蔽性和危害性而备受关注。随着企业对XML技术的广泛应用,XXE漏洞也逐渐成为攻击者们利用的重点目标。一个看似无害的XML文件,可能成为攻击者入侵系统的利器。因此,…...
Spring Boot集成Resilience4J实现限流/重试/隔离
1.前言 上篇文章讲了Resilience4J实现熔断功能,文章详见:Spring Boot集成Resilience4J实现断路器功能 | Harries Blog™,本篇文章主要讲述基于Resilience4J实现限流/重试/隔离。 2.代码工程 pom.xml <dependency><groupId>io…...
谷粒商城实战笔记-119~121-全文检索-ElasticSearch-mapping
文章目录 一,119-全文检索-ElasticSearch-映射-mapping创建1,Elasticsearch7开始不支持类型type。2,mapping2.1 Elasticsearch的Mapping 二,120-全文检索-ElasticSearch-映射-添加新的字段映射三,121-全文检索-Elastic…...
Java 并发编程:Java 线程池的介绍与使用
大家好,我是栗筝i,这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 024 篇文章,在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验,并希望进…...
ubuntu上安装HBase伪分布式-2024年08月04日
ubuntu上安装HBase伪分布式-2024年08月04日 1.HBase介绍2.HBase与Hadoop的关系3.安装前言4.下载及安装5.单机配置6.伪分布式配置 1.HBase介绍 HBase是一个开源的非关系型数据库,它基于Google的Bigtable设计,用于支持对大型数据集的实时读写访问。HBase有…...
Mojo的特征与参数(参数化部分)详解
许多语言都具有元编程功能:即编写生成或修改代码的代码。Python 具有动态元编程功能:装饰器、元类等功能。这些功能使 Python 非常灵活且高效,但由于它们是动态的,因此会产生运行时开销。其他语言具有静态或编译时元编程功能,如 C 预处理器宏和 C++ 模板。这些功能可能受到…...
C++数组、vector求最大值最小值及其下标
使用 <algorithm> 头文件来查找数组或向量中最大值、最小值及其索引 #include <iostream> #include <vector> #include <algorithm> // 包含 std::max_element 和 std::min_elementint main() {std::vector<int> vec {3, 1, 4, 2, 5};// 查找最…...
内网安全:多种横向移动方式
1.MMC20.Application远程执行命令 2.ShellWindows远程执行命令 3.ShellBrowserWindow远程执行命令 4.WinRM远程执行命令横向移动 5.使用系统漏洞ms17010横向移动 DCOM: DCOM(分布式组件对象模型)是微软的一系列概念和程序接口。它支持不同…...
搭建 STM32 网关服务器的全流程:集成嵌入式 C++、TCP/IP 通信、Flash 存储及 JWT 认证(含代码示例)
引言 随着物联网(IoT)技术的快速发展,基于 STM32 的服务器(类似网关)在数据采集、设备控制等方面的应用越来越广泛。本文将介绍搭建一个基于 STM32 的服务器所需的技术栈,以及详细的搭建步骤和代码示例。 …...
一款免费强大的电脑锁屏工具,中文绿色免安装
这款软件主要特点是锁屏后不显示密码输入框,直接输入密码即可解锁。 ScreenBlur是一款功能强大的电脑屏幕锁软件,主要用于保护用户的隐私和数据安全。该软件的主要功能包括自动锁屏、隐藏桌面、加密锁机等。 功能特点 自动锁屏:用户可以设…...
Python | Leetcode Python题解之第319题灯泡开关
题目: 题解: class Solution:def bulbSwitch(self, n: int) -> int:return int(sqrt(n 0.5))...
前端Web-JavaScript(上)
要想让网页具备一定的交互效果,具有一定的动作行为,还得通过JavaScript来实现, 这门语言会让我们的页面能够和用户进行交互。 什么是JavaScript JavaScript(简称:JS) 是一门跨平台、面向对象的脚本语言,是…...
【积累】Python的类
类和方法的概念及实例 类 (Class):类是对具有相同属性和方法的对象集合的抽象描述。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。 方法:类中定义的函数。 构造方法 __init__():这是一个特殊的方法,会在类实例…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
