当前位置: 首页 > news >正文

Pandas的30个高频函数使用介绍

Pandas是Python中用于数据分析的一个强大的库,它提供了许多功能丰富的函数。本文介绍其中高频使用的30个函数。
在这里插入图片描述

  1. read_csv(): 从CSV文件中读取数据并创建DataFrame对象。
import pandas as pd   
df = pd.read_csv('data.csv')   
  1. read_excel(): 从Excel文件中读取数据并创建DataFrame对象。
df = pd.read_excel('data.xlsx')   
  1. to_excel(): 输出数据并保存在新的excel文件中。
df.to_excel('data_output.xlsx')   
  1. head(): 返回前n行数据(默认为5)。
print(df.head(5))   
  1. tail(): 返回最后n行数据(默认为5)。
print(df.tail(5))   
  1. shape: 返回DataFrame的形状(行数和列数)。
rows, cols = df.shape   
print(f"Rows: {rows}, Columns: {cols}")   
  1. columns: 返回DataFrame的列名列表。
column_names = df.columns   
print(column_names)   
  1. index: 返回DataFrame的索引列表。
index_list = df.index   
print(index_list)   
  1. describe(): 生成描述性统计信息,包括计数、平均值、标准差等。
statistics = df.describe()   
print(statistics)   
  1. info(): 返回DataFrame的信息摘要,包括索引、列、非空值数量和内存信息。
print(df.info())   
  1. dtypes: 返回每列的数据类型。
data_types = df.dtypes   
print(data_types)   
  1. drop(): 删除指定行或列。
df = df.drop('column_name', axis=1)   
  1. sort_values(): 根据指定列的值对DataFrame进行排序。
df_sorted = df.sort_values('column_name')   
  1. loc[]: 通过标签选择数据。
df=pd.DataFrame({'Column1': [1,0,0,0,0,0,2,2],      'Column2': [1,1,0,0,0,0,2,2],     'Column3': [0,0,0,1,0,0,2,2],      'Column4': [1,0,0,1,0,0,2,2]})   
df.loc[:,'Column2']   
  1. iloc[]: 通过整数位置选择数据。
cell_data = df.iloc[1, 2]   
  1. at[]: 选择单个元素。
element_value = df.at[1, 'Column4']   
  1. iat[]: 选择单个元素。
element_value = df.iat[1, 2]   
  1. isnull(): 检查缺失值。
missing_values = df.isnull()   
  1. notnull(): 检查非缺失值。
non_missing_values = df.notnull()   
  1. fillna(): 填充缺失值。
df_filled = df.fillna(0)   
  1. replace(): 替换值。
df_replaced = df.replace(old_value, new_value)   
  1. rename(): 重命名列名。
df_renamed = df.rename(columns={'old_name': 'new_name'})   
  1. set_index(): 设置索引列。
df_indexed = df.set_index('column_name')   
  1. reset_index(): 重置索引。
df_reset = df.reset_index()   
  1. groupby(): 根据指定列对数据进行分组。
grouped = df.groupby('column_name')   
  1. agg(): 对分组后的数据应用聚合函数。
aggregated = grouped.agg({'column_name': ['sum', 'mean']})   
  1. unique(): 查找该列唯一值。
df=pd.DataFrame({'Column1': [1,0,0,0,0,0,2,2],       'Column2': [1,1,0,0,0,0,2,2],      'Column3': [0,0,0,1,0,0,2,2],       'Column4': [1,0,0,1,0,0,2,2]})   
list(df['Column1'].unique())#唯一值是0,1,2   
  1. concat(): 连接两个或多个DataFrame。
df_concatenated = pd.concat([df1, df2])   
  1. merge(): 合并两个DataFrame,根据一个或多个键进行连接。
merged_df = pd.merge(df1, df2, on='key')   
  1. apply(): 应用函数至指定行或列。
df['new_column'] = df['column_name'].apply(lambda x: x * 2)  # 对列应用函数   

以上这些函数覆盖了从数据加载、预处理、转换到分析的各个阶段。Pandas的强大之处在于其函数的灵活性和易用性,使得数据分析工作变得简单高效。

关于Python技术提升

由于文章篇幅有限,文档资料内容较多,需要这些文档的朋友,可以加小助手微信免费获取,【保证100%免费】,中国人不骗中国人。

在这里插入图片描述

                                     **(扫码立即免费领取)**

全套Python学习资料分享:

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,还有环境配置的教程,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频全套

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。


在这里插入图片描述

如有侵权,请联系删除。

相关文章:

Pandas的30个高频函数使用介绍

Pandas是Python中用于数据分析的一个强大的库,它提供了许多功能丰富的函数。本文介绍其中高频使用的30个函数。 read_csv(): 从CSV文件中读取数据并创建DataFrame对象。 import pandas as pd df pd.read_csv(data.csv) read_excel(): 从Excel文件中读取数据…...

1. protobuf学习

文章目录 1. protobuf介绍1.1 ProtoBuf使用场景说明2. 其他序列化介绍2.1 Json2.1.1 使用Json序列化2.1.2 Json反序列化2.2 其他可选地序列化和反序列化3. protoBuf3.1 protobuf数据类型3.2 protobuf使用步骤3.2.1 定义proto文件3.2.2 编译proto文件3.2.2.1 安装protocol buffe…...

Java面试题:SpringBean的生命周期

SpringBean的生命周期 BeanDefinition Spring容器在进行实例化时,会将xml配置的信息封装成BeanDefinition对象 Spring根据BeanDefinition来创建Bean对象 包含很多属性来描述Bean 包括 beanClassName:bean的类名,通过类名进行反射 initMethodName:初始化方法名称 proper…...

50 IRF检测MAD-BFD

IRF 检测MAD-BFD IRF配置思路 网络括谱图 主 Ten-GigabitEthernet 1/0/49 Ten-GigabitEthernet 1/0/50 Ten-GigabitEthernet 1/0/51 备 Ten-GigabitEthernet 2/0/49 Ten-GigabitEthernet 2/0/50 Ten-GigabitEthernet 2/0/51 1 利用console线进入设备的命令行页…...

SpringSecurity-1(认证和授权+SpringSecurity入门案例+自定义认证+数据库认证)

SpringSecurity 1 初识权限管理1.1 权限管理的概念1.2 权限管理的三个对象1.3 什么是SpringSecurity 2 SpringSecurity第一个入门程序2.1 SpringSecurity需要的依赖2.2 创建web工程2.2.1 使用maven构建web项目2.2.2 配置web.xml2.2.3 创建springSecurity.xml2.2.4 加载springSe…...

Java高级

类变量/静态变量package com.study.static_; 通过static关键词声明,是该类所有对象共享的对象,任何一个该类的对象去访问他的时候,取到的都是相同的词,同样任何一个该类的对象去修改,所修改的也是同一个对象. 如何定义及访问? 遵循相关访问权限 访问修饰符 static 数据类型…...

python实现图像分割算法3

python实现区域增长算法 算法原理基本步骤数学模型Python实现详细解释优缺点应用领域区域增长算法是一种经典的图像分割技术,它的目标是将图像划分为多个互不重叠的区域。该算法通过迭代地合并与种子区域相似的邻域像素来实现分割。区域增长算法通常用于需要精确分割的场景,如…...

解密XXE漏洞:原理剖析、复现与代码审计实战

在网络安全领域,XML外部实体(XXE)漏洞因其隐蔽性和危害性而备受关注。随着企业对XML技术的广泛应用,XXE漏洞也逐渐成为攻击者们利用的重点目标。一个看似无害的XML文件,可能成为攻击者入侵系统的利器。因此&#xff0c…...

Spring Boot集成Resilience4J实现限流/重试/隔离

1.前言 上篇文章讲了Resilience4J实现熔断功能&#xff0c;文章详见&#xff1a;Spring Boot集成Resilience4J实现断路器功能 | Harries Blog™&#xff0c;本篇文章主要讲述基于Resilience4J实现限流/重试/隔离。 2.代码工程 pom.xml <dependency><groupId>io…...

谷粒商城实战笔记-119~121-全文检索-ElasticSearch-mapping

文章目录 一&#xff0c;119-全文检索-ElasticSearch-映射-mapping创建1&#xff0c;Elasticsearch7开始不支持类型type。2&#xff0c;mapping2.1 Elasticsearch的Mapping 二&#xff0c;120-全文检索-ElasticSearch-映射-添加新的字段映射三&#xff0c;121-全文检索-Elastic…...

Java 并发编程:Java 线程池的介绍与使用

大家好&#xff0c;我是栗筝i&#xff0c;这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 024 篇文章&#xff0c;在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验&#xff0c;并希望进…...

ubuntu上安装HBase伪分布式-2024年08月04日

ubuntu上安装HBase伪分布式-2024年08月04日 1.HBase介绍2.HBase与Hadoop的关系3.安装前言4.下载及安装5.单机配置6.伪分布式配置 1.HBase介绍 HBase是一个开源的非关系型数据库&#xff0c;它基于Google的Bigtable设计&#xff0c;用于支持对大型数据集的实时读写访问。HBase有…...

Mojo的特征与参数(参数化部分)详解

许多语言都具有元编程功能:即编写生成或修改代码的代码。Python 具有动态元编程功能:装饰器、元类等功能。这些功能使 Python 非常灵活且高效,但由于它们是动态的,因此会产生运行时开销。其他语言具有静态或编译时元编程功能,如 C 预处理器宏和 C++ 模板。这些功能可能受到…...

C++数组、vector求最大值最小值及其下标

使用 <algorithm> 头文件来查找数组或向量中最大值、最小值及其索引 #include <iostream> #include <vector> #include <algorithm> // 包含 std::max_element 和 std::min_elementint main() {std::vector<int> vec {3, 1, 4, 2, 5};// 查找最…...

内网安全:多种横向移动方式

1.MMC20.Application远程执行命令 2.ShellWindows远程执行命令 3.ShellBrowserWindow远程执行命令 4.WinRM远程执行命令横向移动 5.使用系统漏洞ms17010横向移动 DCOM&#xff1a; DCOM&#xff08;分布式组件对象模型&#xff09;是微软的一系列概念和程序接口。它支持不同…...

搭建 STM32 网关服务器的全流程:集成嵌入式 C++、TCP/IP 通信、Flash 存储及 JWT 认证(含代码示例)

引言 随着物联网&#xff08;IoT&#xff09;技术的快速发展&#xff0c;基于 STM32 的服务器&#xff08;类似网关&#xff09;在数据采集、设备控制等方面的应用越来越广泛。本文将介绍搭建一个基于 STM32 的服务器所需的技术栈&#xff0c;以及详细的搭建步骤和代码示例。 …...

一款免费强大的电脑锁屏工具,中文绿色免安装

这款软件主要特点是锁屏后不显示密码输入框&#xff0c;直接输入密码即可解锁。 ScreenBlur是一款功能强大的电脑屏幕锁软件&#xff0c;主要用于保护用户的隐私和数据安全。该软件的主要功能包括自动锁屏、隐藏桌面、加密锁机等。 功能特点 自动锁屏&#xff1a;用户可以设…...

Python | Leetcode Python题解之第319题灯泡开关

题目&#xff1a; 题解&#xff1a; class Solution:def bulbSwitch(self, n: int) -> int:return int(sqrt(n 0.5))...

前端Web-JavaScript(上)

要想让网页具备一定的交互效果&#xff0c;具有一定的动作行为&#xff0c;还得通过JavaScript来实现, 这门语言会让我们的页面能够和用户进行交互。 什么是JavaScript JavaScript&#xff08;简称&#xff1a;JS&#xff09; 是一门跨平台、面向对象的脚本语言&#xff0c;是…...

【积累】Python的类

类和方法的概念及实例 类 (Class)&#xff1a;类是对具有相同属性和方法的对象集合的抽象描述。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。 方法&#xff1a;类中定义的函数。 构造方法 __init__()&#xff1a;这是一个特殊的方法&#xff0c;会在类实例…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...