当前位置: 首页 > news >正文

详解Xilinx FPGA高速串行收发器GTX/GTP(3)--GTX的时钟架构

目录

1、参考时钟

2、时钟方案

2.1、单个外部参考时钟驱动单个QUAD中的多个transceiver

2.2、单个外部参考时钟驱动多个QUAD中的多个transceiver

2.3、同一个Quad中,多个GTX Transceiver使用多个参考时钟

2.4、不同Quad中,多个GTX Transceiver 使用多个参考时钟

3、QPLL和CPLL的工作原理


         文章总目录点这里:《FPGA接口与协议》专栏的说明与导航


1、参考时钟

        GTX的时钟架构如下:

image-20240731232908331

        对于QPLL来说,它的时钟来源有3个:

  1. 外部差分差分时钟,通过IBUFDS_GTE2原语后变成单端时钟,然后给到QPLL。这种时钟有两个,分别叫做GTREFCLK0GTREFCLK1

  2. 来自北边(GT Quad的排布是南北向排布的)的时钟,这个时钟是北边的GT Quad的来自外部的时钟。

  3. 来自南边(GT Quad的排布是南北向排布的)的时钟,这个时钟是南边的GT Quad的来自外部的时钟。

        GTXE2_COMMON原语实际上就是对QPLL的再

相关文章:

详解Xilinx FPGA高速串行收发器GTX/GTP(3)--GTX的时钟架构

目录 1、参考时钟 2、时钟方案 2.1、单个外部参考时钟驱动单个QUAD中的多个transceiver 2.2、单个外部参考时钟驱动多个QUAD中的多个transceiver 2.3、同一个Quad中,多个GTX Transceiver使用多个参考时钟 2.4、不同Quad中,多个GTX Transceiver 使用多个参考时钟 3、QP…...

简单搭建dns服务器

目录 一.安装服务 二.编写子配置文件 三.编写主配置文件 四.编写文件 五.重启服务测试 配置端:IP地址为172.25.254.100、主机名为node1.rhel9.org 测试端:IP地址为172.25.254.101、主机名为node2.rhel9.org 一.安装服务 [rootnode1 ~]# dnf inst…...

大数据进阶(Advanced Big Data)

大数据进阶(Advanced Big Data) 目录 引言大数据架构 Lambda架构Kappa架构 大数据技术栈 数据采集与预处理数据存储与管理数据处理与分析数据可视化与展示 大数据分析方法 机器学习深度学习自然语言处理图数据分析 大数据在工业中的应用 制造业能源管理…...

微信小程序开发优惠券制作源码

微信小程序开发优惠券制作源码。制作一个自带流量的小程序商城,功能强大玩法新,轻松实现引流,推广,卖货,分销,会员管理,直播等多种功能需求需要哪些编辑代码源码呢?http://m.bokequ.com/list/124-2.html 代码分享 <!DOCTYPE HTML> <html xmlns"http://www.w3.o…...

mongodb的安装操作记录

mongodb的安装操作记录 1 上传软件包&#xff0c;并解压 [rootmonitor local]# tar -xvf mongodb-linux-x86_64-rhel70-7.0.12.tgz mongodb-linux-x86_64-rhel70-7.0.12/LICENSE-Community.txt mongodb-linux-x86_64-rhel70-7.0.12/MPL-2 mongodb-linux-x86_64-rhel70-7.0.1…...

C++客户端Qt开发——多线程编程(二)

多线程编程&#xff08;二&#xff09; ③线程池 Qt中线程池的使用 | 爱编程的大丙 1>线程池 我们使用线程的时候就去创建一个线程&#xff0c;这样实现起来非常简便&#xff0c;但是就会有一个问题&#xff1a;如果并发的线程数量很多&#xff0c;并且每个线程都是执行…...

ubuntu20复现NBV探索

官网代码 后退地平线下一个最佳景观规划师 这个代码有些久远&#xff0c;issue里面有人已经在ubuntu20里面使用了3dmr&#xff0c;但是他那个代码我也运行不成功&#xff0c;docker网络一直也不佳&#xff0c;所以还是自己重新修改源码靠谱。 最终实现的代码等有时间上传到gi…...

【51单片机仿真】基于51单片机设计的温湿度采集检测系统仿真源码文档视频——文末资料下载

演示 目录 1.系统功能 2.背景介绍 3.硬件电路设计 4.软件设计 4.1 主程序设计 4.2 温湿度采集模块程序设计 4.3 LCD显示屏程序设计 5.系统测试 6.结束语 源码、仿真、文档视频等资料下载链接 1.系统功能 该系统通过与AT89C51单片机、LCD1602显示屏和DHT11温湿度传感器…...

【Hadoop-驯化】一文学会hadoop访问hdfs中常用命令使用技巧

【Hadoop-驯化】一文学会hadoop访问hdfs中常用命令使用技巧 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; 免费获取相关内容文档关注&am…...

【Spring】Bean详细解析

1.Spring Bean的生命周期 整体上可以简单分为四步&#xff1a;实例化 —> 属性赋值 —> 初始化 —> 销毁。初始化这一步涉及到的步骤比较多&#xff0c;包含 Aware 接口的依赖注入、BeanPostProcessor 在初始化前后的处理以及 InitializingBean 和 init-method 的初始…...

决策树总结

决策树总结 决策树是一种广泛应用的机器学习算法&#xff0c;它模拟了人类进行决策时的逻辑思维过程&#xff0c;通过构建一棵树状结构来进行数据的分类或回归预测。决策树模型因其直观易懂、易于解释、能够处理多类问题以及无需进行复杂的特征缩放等优点&#xff0c;在数据挖…...

通俗易懂!495页看漫画学Python入门教程(全彩版)Git首发破万Star

前言 在编程的世界里&#xff0c;Python无疑是一颗璀璨的明星。从最初作为打发圣诞节闲暇时间的项目&#xff0c;到如今成为最受欢迎的程序设计语言之一&#xff0c;Python以其简洁、易学、强大的特点吸引了无数编程爱好者。然而&#xff0c;对于初学者来说&#xff0c;编程的…...

websocket实现简易聊天室

websocket实现简易聊天室 又做了一个关于websocket广播和在线人数统计的练习&#xff0c;实现一个简易的聊天室。 前端vue3 前端里的内容主要包含&#xff1a; 1.css的animation来实现公告从右到左的轮播。 2.websocket的onmessage里对不同消息的处理。 <template>&l…...

vulhub-wordpress

1.打开wordpress关卡&#xff0c;选择简体中文 添加信息——点击安装WordPress 安装完成——登录 点击外观——编辑主题 可以加入一句话木马&#xff0c;但是我写入的是探针文件 也可以去上传一个带有木马的主题 上传之后会自动解压 1.php就是里面的木马文件...

【机器学习算法基础】(基础机器学习课程)-10-逻辑回归-笔记

一、模型的保存与加载 逻辑回归是一种常见的机器学习算法&#xff0c;广泛用于分类问题。为了在不同的时间或环境下使用训练好的模型&#xff0c;我们通常需要将其保存和加载。 保存模型 训练模型&#xff1a;首先&#xff0c;你需要用你的数据训练一个逻辑回归模型。例如&…...

自动驾驶行业知识汇总

应届生月薪2W的自动驾驶开发、机器人、后端开发&#xff0c;软件开发该如何学习相关技术栈_哔哩哔哩_bilibili 两万字详解自动驾驶开发工具链的现状与趋势 (qq.com) 九章智驾 - 2023年度文章大合集 (qq.com) 九章 - 2022年度文章大合集 (qq.com)...

C#根据反射操作对象

前言 反射使用&#xff0c;让我们的程序可以动态增加一些功能&#xff0c;让原本固化的步骤逻辑变得动态&#xff0c;这是它的优点。当然使用反射首次加载会有性能损耗以及使用复杂&#xff1b;但是现在大家都在讲动态&#xff0c;使用好它应该是一个重要的编程理念提升。MVC、…...

打包python脚本(flask、jinja2)为exe文件

20240803 概述 在我很早时候学习python的时候&#xff0c;就利用过某个工具将其打包为exe文件&#xff0c;然后在没有python环境的机器上运行&#xff0c;这样可以减少安装python环境和各种库的过程。 最近在开发一个在虚拟机上运行的程序的时候就遇到了打包一些环境的问题&…...

嵌入式初学-C语言-练习三

#部分题目可能在之前的博客中有&#xff0c;请谅解&#xff0c;保证常见题型均被发出# 1.计算n以内所有正奇数的和 ? n值通过键盘输入 代码&#xff1a; 1 /*2 需求&#xff1a;计算n以内所有正奇数的和 ? n值通过键盘输入3 */4 #include <stdio.h>5 6 int main()7 …...

最新版Sonible Plugins Bundle v2024 winmac,简单智能,持续更新长期有效

一。Sonible Plugins Bundle v2024 win&mac Sonible Plugins Bundle是一款以创作者为中心的智能音频插件系列。这些工具的特点是易于使用&#xff0c;搭配高级处理和优质音质。pure:bundle的所有插件都由sonible的智能插件系列中使用的技术驱动&#xff0c;但在设计时考虑到…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...