当前位置: 首页 > news >正文

LLM推理入门实践:基于 Hugging Face Transformers 和 Qwen2模型 进行文本问答

文章目录

  • 1. HuggingFace模型下载
  • 2. 模型推理:文本问答

1. HuggingFace模型下载

模型在 HuggingFace 下载,如果下载速度太慢,可以在 HuggingFace镜像网站 或 ModelScope 进行下载。

使用HuggingFace的下载命令(需要先注册HuggingFace账号):

第一步:安装 git-lfs

curl https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash
apt-get install git-lfs

第二步:下载 Qwen2-0.5B 模型

git lfs clone https://huggingface.co/Qwen/Qwen2-0.5B

下载完后的模型包括以下文件:

config.json  # 模型配置文件,包含了模型的各种参数设置,例如层数、隐藏层大小、注意力头数
generation_config.json   #文本生成相关的模型配置
merges.txt   #训练tokenizer阶段所得到的合并词表结果
model.Safetensors    #模型文件
tokenizer.json    #分词器,将词转换为数字
tokenizer_config.json   #分词模型的配置信息,如分词器的类型、词汇表大小、最大序列长度、特殊标记等
vocab.json    #词表

2. 模型推理:文本问答

本文使用单卡 A100-80G 进行推理实验

注意:使用 Qwen2 模型需要将 transformers 库更新到最新版本

code:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM# 从本地加载预训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_path = "models/Qwen2-0.5B"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map=device)  
# 设置 device_map="auto" 会自动使用所有多卡
print(f"model: {model}")# 加载 tokenizer(分词器)
# 分词器负责将句子分割成更小的文本片段 (词元) 并为每个词元分配一个称为输入 id 的值(数字),因为模型只能理解数字。
# 每个模型都有自己的分词器词表,因此使用与模型训练时相同的分词器很重要,否则它会误解文本。
tokenizer = AutoTokenizer.from_pretrained(model_path, add_eos_token=True, padding_side='left')
# add_eos_token=True: 可选参数,表示在序列的末尾添加一个结束标记(end-of-sequence token),这有助于模型识别序列的结束。
# padding_side='left': 可选参数,表示 padding 应该在序列的哪一边进行,确保所有序列的长度一致。# 模型输入
input_text = "介绍一下悉尼这座城市。"# 对输入文本分词
input_ids = tokenizer(input_text, return_tensors="pt").to(device)
# return_tensors="pt": 指定返回的数值序列的数据类型。"pt"代表 PyTorch Tensor,表示分词器将返回一个PyTorch而不是TensorFlow对象# 生成文本回答
# max_new_tokens:模型生成的新的 token 的最大数量为 200
outputs = model.generate(input_ids["input_ids"], max_new_tokens=200)
print(f"type(outputs) = {type(outputs)}")   # <class 'torch.Tensor'>
print(f"outputs.shape = {outputs.shape}")   # torch.Size([1, 95]),outputs.shape是随机的,是不超过200的数# 将输出token解码为文本
decoded_outputs = tokenizer.decode(outputs[0])
print(f"decoded_outputs: {decoded_outputs}")

模型输出的文本回答如下:

decoded_outputs: 介绍一下悉尼这座城市。 悉尼这座城市位于澳大利亚东南部,是澳大利亚最大的城市之一。它是一个现代化的城市,拥有许多现代化的建筑和设施,如购物中心、博馆、剧院和音乐厅等。悉尼的气候宜人,四季分明,夏季炎热,冬季寒冷,适合旅游和度假。此外,悉尼还有许多著名的景点,如悉尼歌剧院、悉尼塔、悉尼海港大桥等,这些景点吸引来自世界各地的游客。<|endoftext|>

Qwen2-0.5B 模型结构:

Qwen2ForCausalLM((model): Qwen2Model((embed_tokens): Embedding(151936, 896)(layers): ModuleList((0-23): 24 x Qwen2DecoderLayer((self_attn): Qwen2SdpaAttention((q_proj): Linear(in_features=896, out_features=896, bias=True)(k_proj): Linear(in_features=896, out_features=128, bias=True)(v_proj): Linear(in_features=896, out_features=128, bias=True)(o_proj): Linear(in_features=896, out_features=896, bias=False)(rotary_emb): Qwen2RotaryEmbedding())(mlp): Qwen2MLP((gate_proj): Linear(in_features=896, out_features=4864, bias=False)(up_proj): Linear(in_features=896, out_features=4864, bias=False)(down_proj): Linear(in_features=4864, out_features=896, bias=False)(act_fn): SiLU())(input_layernorm): Qwen2RMSNorm()(post_attention_layernorm): Qwen2RMSNorm()))(norm): Qwen2RMSNorm())(lm_head): Linear(in_features=896, out_features=151936, bias=False)
)

参考资料:Hugging Face Transformers 萌新完全指南

相关文章:

LLM推理入门实践:基于 Hugging Face Transformers 和 Qwen2模型 进行文本问答

文章目录 1. HuggingFace模型下载2. 模型推理&#xff1a;文本问答 1. HuggingFace模型下载 模型在 HuggingFace 下载&#xff0c;如果下载速度太慢&#xff0c;可以在 HuggingFace镜像网站 或 ModelScope 进行下载。 使用HuggingFace的下载命令&#xff08;需要先注册Huggin…...

python:YOLO格式数据集图片和标注信息查看器

作者&#xff1a;CSDN _养乐多_ 本文将介绍如何实现一个可视化图片和标签信息的查看器&#xff0c;代码使用python实现。点击下一张和上一张可以切换图片。 文章目录 一、脚本界面二、完整代码 一、脚本界面 界面如下图所示&#xff0c; 二、完整代码 使用代码时&#xff0…...

AGI思考探究的意义、价值与乐趣 Ⅴ

搞清楚模型对知识或模式的学习与迁移对于泛化意味什么&#xff0c;或者说两者间的本质&#xff1f;相信大家对泛化性作为大语言模型LLM的突出能力已经非常了解了 - 这也是当前LLM体现出令人惊叹的通用与涌现能力的基础前提&#xff0c;这里不再过多赘述&#xff0c;但仍希望大家…...

c++: mangle命名规则

其实可用根据binutils/c++filt的源代码看。找到mangle的命名规则, 但是从网上找到了一个总结,但是github有时候上不去,摘录再次。 https://github.com/gchatelet/gcc_cpp_mangling_documentation https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 举例: _ZN8…...

系统化学习 H264视频编码(05)码流数据及相关概念解读

说明&#xff1a;我们参考黄金圈学习法&#xff08;什么是黄金圈法则?->模型 黄金圈法则&#xff0c;本文使用&#xff1a;why-what&#xff09;来学习音H264视频编码。本系列文章侧重于理解视频编码的知识体系和实践方法&#xff0c;理论方面会更多地讲清楚 音视频中概念的…...

【VMware】如何演示使用U盘在VMware虚拟机上安装Windows11

一、前置准备 在开始使用U盘演示在VMware虚拟机上装Windows11前&#xff0c;我们需要做以下前置的准备&#xff1a; 已制作好的Windows引导盘&#xff1b;WMware软件 如何制作Windows引导盘&#xff1f; 推荐参考&#xff1a; 【建议收藏】2024年最新Windows系统重装教程&…...

HanLP和Jieba区别

HanLP和Jieba都是中文分词工具&#xff0c;但它们在多个方面存在区别。以下是对两者区别的详细分析&#xff1a; 一、开发背景与语言支持 HanLP&#xff1a;由大连理工大学自然语言处理与社会人文计算实验室开发&#xff0c;是一个开源的自然语言处理工具包。它主要使用Java语…...

荒原之梦考研:考研二战会很难吗?

考研二战是不是很难&#xff0c;其实很大程度上取决于我们自己&#xff0c;我们能否认清自己的优势&#xff0c;能否指定和执行合理的计划&#xff0c;有没有强大的心理支撑等&#xff0c;都是决定考研二战能否成功&#xff0c;或者能否比较轻松的成功的关键。 在本文中&#…...

【Git企业级开发实战指南①】Git安装、基本操作!

目录 一、Git是什么&#xff1f;1.1特点1.2功能1.3基本概念 二、Git安装2.1Ubuntu下安装2.2Centos下安装Git 三、Git基本操作3.1创建git本地仓库3.2配置Git3.3 工作区&暂存区&版本库3.4 实操案例3.4.1添加文件 3.5 修改文件3.6版本回退3.7查看历史操作日志3.7撤销修改3…...

Leetcode 3239. Minimum Number of Flips to Make Binary Grid Palindromic I

Leetcode 3239. Minimum Number of Flips to Make Binary Grid Palindromic I 1. 解题思路2. 代码实现 题目链接&#xff1a;3239. Minimum Number of Flips to Make Binary Grid Palindromic I 1. 解题思路 这一题思路上的话就是分别考察一下把所有行都变成回文所需要的fli…...

C++面试基础算法的简要介绍

C是一种广泛使用的编程语言&#xff0c;尤其在算法和数据结构的实现中占据重要地位。以下是对C基础算法的一些介绍&#xff0c;涵盖了排序、查找、搜索算法以及基本的遍历算法等方面。 排序算法 快速排序&#xff08;Quick Sort&#xff09; 快速排序是一种分而治之的排序算法…...

【Linux网络编程】套接字Socket(UDP)

网络编程基础概念&#xff1a; ip地址和端口号 ip地址是网络协议地址&#xff08;4字节32位&#xff0c;形式&#xff1a;xxx.xxx.xxx.xxx xxx在范围[0, 255]内&#xff09;&#xff0c;是IP协议提供的一种统一的地址格式&#xff0c;每台主机的ip地址不同&#xff0c;一个…...

jvm方法返回相关指令ireturn,areturn,return等分析

正文 看图&#xff1a; 做的事情如下: 1:弹出当前的方法栈帧 2:获取上一个方法 3:从当前方法的操作数栈中获取执行结果,并推送到上一个方法的操作数栈中对应的伪代码&#xff1a; Override public void execute(Frame frame) {Thread thread frame.thread();Frame curren…...

宝塔部署springboot vue ruoyi前后端分离项目,分离lib、resources

1、“文件”中创建好相关项目目录,并将项目相关文件传到对应目录 例如&#xff1a;项目名称/ #项目总目录 api/ #存放jar项目的Java项目文件 manage/ #vue管理后端界面 …...

Python 基础教程:List(列表)的使用

《Python 基础教程&#xff1a;List&#xff08;列表&#xff09;的使用》 在 Python 中&#xff0c;列表是最基本的数据结构之一&#xff0c;它是一种有序的、可变的数据集合&#xff0c;可以包含任意类型的元素&#xff0c;包括数字、字符串、其他列表等。 1. 列表的创建 …...

kubebuilder常用标签

kubebuilder 标签是用于注解 Kubernetes CRD&#xff08;Custom Resource Definition&#xff09; 的标签&#xff0c;主要用于在 Operator SDK 和 Kubebuilder 框架中生成代码、验证规则以及自定义 CRD 的生成。以下是常用的 kubebuilder 标签&#xff1a; 1. 字段验证标签 …...

ChatTTS文本转语音本地部署结合内网穿透实现远程使用生成AI音频

文章目录 前言1. 下载运行ChatTTS模型2. 安装Cpolar工具3. 实现公网访问4. 配置ChatTTS固定公网地址 前言 本篇文章主要介绍如何快速地在Windows系统电脑中本地部署ChatTTS开源文本转语音项目&#xff0c;并且我们还可以结合Cpolar内网穿透工具创建公网地址&#xff0c;随时随…...

基于微信小程序的高校大学生信息服务平台设计与实现

基于微信小程序的高校大学生信息服务平台设计与实现 Design and Implementation of a College Student Information Service Platform based on WeChat Mini Program 完整下载链接:基于微信小程序的高校大学生信息服务平台设计与实现 文章目录 基于微信小程序的高校大学生信息…...

YOLOV8替换Lion优化器

YOLOV8替换Lion优化器 1 优化器介绍博客 参考bilibili讲解视频 论文地址&#xff1a;https://arxiv.org/abs/2302.06675 代码地址&#xff1a;https://github.com/google/automl/blob/master/lion/lion_pytorch.py """PyTorch implementation of the Lion …...

uniapp页面里面的登录注册模板

<!-- 账号密码登录页 --> <template><view class"page"><view class"uni-content"><view class"login-logo"><image :src"logo"></image></view><text class"title title-bo…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...