当前位置: 首页 > news >正文

【FPGA】modelsim编译verilog代码产生错误集合

错误1:

LHS in procedural continuous assignment may not be a net

可能是一些变量不能放在一些begin和end中,改下assign的位置

新手求助 LHS in procedural continuous assignment may not be a net - 数字IC设计讨论(IC前端|FPGA|ASIC) - EETOP 创芯网论坛 (原名:电子顶级开发网) -

相关文章:

【FPGA】modelsim编译verilog代码产生错误集合

错误1: LHS in procedural continuous assignment may not be a net 可能是一些变量不能放在一些begin和end中,改下assign的位置 新手求助 LHS in procedural continuous assignment may not be a net - 数字IC设计讨论(IC前端|FPGA|ASIC) - EETOP 创…...

Rabbitmq的持久化机制

我们通过手动应答处理了在消费者出故障消息丢失的情况,但是如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。默认情况下 RabbitMQ 退出或由于某种原因崩溃时,它会清空队列和消息,除非告知它不要这样做。确保消息不会丢失可…...

Unity UnityWebRequest封装类

简化api调用流程&#xff0c;非常奈斯。 RestWebClient.cs using System; using System.Collections; using UnityEngine; using UnityEngine.Networking;namespace MYTOOL.RestClient {/// <summary>/// UnityWebRequest封装类/// </summary>public class RestW…...

JVM内存划分

Java虚拟机&#xff08;JVM&#xff09;的内存划分是指JVM在运行时所使用的内存区域的组织和管理方式。JVM内存主要分为以下几个区域&#xff1a; 堆区&#xff08;Heap&#xff09;&#xff1a; 用途&#xff1a;用于存储所有对象实例和数组&#xff0c;是JVM中最大的一块内存…...

c++ 全排列

在C中&#xff0c;全排列&#xff08;permutation&#xff09;可以使用递归算法或标准库函数来实现。以下是使用递归和STL库std::next_permutation来生成一个集合的全排列的两种方法。 方法一&#xff1a;递归算法 递归方法通过交换元素来生成所有可能的排列组合。 #include…...

未授权访问漏洞系列详解⑤!

Kubernetes Api Server未授权访问漏洞 Kubernetes 的服务在正常启动后会开启两个端口:Localhost Port(默认8080)Secure Port(默认6443)。这两个端口都是提供 Api Server 服务的&#xff0c;一个可以直接通过Web 访问&#xff0c;另一个可以通过 kubectl 客户端进行调用。如果运…...

【CONDA】库冲突解决办法

如今&#xff0c;使用PYTHON作为开发语言时&#xff0c;或多或少都会使用到conda。安装Annaconda时一般都会选择在启动终端时进入conda的base环境。该操作&#xff0c;实际上是在~/.bashrc中添加如下脚本&#xff1a; # >>> conda initialize >>> # !! Cont…...

【网络世界】数据链路层

目录 &#x1f308;前言&#x1f308; &#x1f4c1; 初识数据链路层 &#x1f4c2; 概念 &#x1f4c2; 协议格式 &#x1f4c1; MAC地址 &#x1f4c2; 概念 &#x1f4c2; 与IP地址的区别 &#x1f4c1; MTU &#x1f4c2; 对IP协议的影响 &#x1f4c2; 对UDP协议的影响…...

AllReduce通信库;Reduce+LayerNorm+Broadcast 算子;LayerNorm(层归一化)和Broadcast(广播)操作;

目录 AllReduce通信库 一、定义与作用 二、常见AllReduce通信库 三、AllReduce通信算法 四、总结 Reduce+LayerNorm+Broadcast 算子 1. Reduce 算子 2. LayerNorm 算子 3. Broadcast 算子 组合作用 LayerNorm(层归一化)和Broadcast(广播)操作 提出的创新方案解析 优点与潜在…...

2024.8.5 作业

使用有名管道实现&#xff0c;一个进程用于给另一个进程发消息&#xff0c;另一个进程收到消息后&#xff0c;展示到终端上&#xff0c;并且将消息保存到文件上一份 代码&#xff1a; /*******************************************/ 文件名&#xff1a;create.c /********…...

MySQL数据库——数据库的基本操作

目录 三、数据库的基本操作 1.数据库中库的操作 ①创建数据库 ②字符集和校验规则 ③操纵数据库 ④备份与恢复 2.数据库中表的操作 ①创建表 ②查看表 1> 查看表位于的数据库 2>查看所有表 3>查看表中的数据 4>查看创建表的时候的详细信息 ③修改表 …...

SQL数据库语句练习

1、mysql常用的数据类型是_整数&#xff08;int&#xff09;__、_小数&#xff08;decimal&#xff09;__、_字符串&#xff08;varchar&#xff09;__、_日期时间&#xff08;datetime&#xff09;___。 2、mysql的约束有__主键&#xff08;primary key&#xff09;_、_非空&…...

【Python】常用的pdf提取库介绍对比

提取PDF内容的Python库有多种选择&#xff0c;每个库都有其独特的优缺点。以下是一些常用的库以及它们的优缺点和示例代码&#xff1a; pdfplumberPyMuPDF (fitz)PyPDF2PDFMinerCamelot 1. pdfplumber 优点&#xff1a; 易于使用&#xff0c;提供简单直观的API。能提取文本…...

sbatch提交并行作业 运行python程序 指定输入参数从1到100

#!/bin/bash #SBATCH --job-namemy_python_job #SBATCH --outputmy_python_job_%j.out #SBATCH --errormy_python_job_%j.err #SBATCH --ntasks100# 载入所需模块 # module load python/3.8.5# 执行Python脚本并传递任务ID作为参数 for i in {1..100}; dosrun python my_script…...

OD C卷 - 中庸行者

中庸行者 &#xff08;200&#xff09; 给一个m*n的整数矩阵作为地图&#xff0c;矩阵数值为地形的高度&#xff0c;选择图中任意一点作为起点&#xff0c;向左右上下四个方向移动&#xff1a; 只能上坡、下坡&#xff0c;不能走相同高度的点&#xff1b;不允许连续上坡 或者连…...

最新CSS3横向菜单的实现

横向菜单 原始代码&#xff1a; <nav class"list1"><ul><li><a href"#">Shirts</a></li><li><a href"#">Pants</a></li><li><a href"#">Dresses</a>…...

(2024,LlamaGen,Llama,自回归下一token预测,模型扩展)自回归模型优于扩散:Llama 用于可扩展图像生成

Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation 目录 0. 摘要 1. 引言 2. 自回归模型在图像生成中的应用 2.1 概述 2.2 图像 tokenizer 2.3 自回归模型生成图像 2.4 规模扩展 2.5 服务 3. 实验 5. 结论 0. 摘要 我们介绍 LlamaGen&…...

重新安装操作系统的软件都有哪些?

重新安装操作系统关键步骤 重新安装操作系统通常涉及到几个关键步骤&#xff1a;创建可启动媒体、备份现有数据、安装操作系统、以及系统初始化和配置。以下是一些常用工具和软件&#xff0c;它们可以帮助你完成这些步骤&#xff1a; 创建可启动媒体 Rufus&#xff1a;用于W…...

深圳水务展|2025深圳国际水务科技博览会

2025深圳国际水务科技博览会 展会主题: 新质生产力赋能水务产业高质量发展 展会时间&#xff1a;2025年7月24-26日 展会地点&#xff1a;深圳会展中心&#xff08;福田&#xff09; 主办单位&#xff1a; 广东省水利学会 深圳市水务学会 协办单位&#xff1a; 中国水利…...

OpenAI not returning a result?

题意&#xff1a;OpenAI 没有返回结果吗&#xff1f; 问题背景&#xff1a; Im trying to use the OpenAI beta but I cant seem to get a result. Im accessing the API via an NPM package (openai-api - npm). I have that setup and working but when I make a request th…...

[Windows]_[初级]_[GetVersionEx获取系统版本错误的原因]

场景 开发WTL/ATL/Win32程序时, 有时候需要获取系统版本号&#xff0c;以便判断用户在使用软件时的系统。在某一天突然发现获取的系统版本号是错的, 一直是版本号6.2.x,什么情况&#xff1f; 说明 如果软件没有针对Win8.1或Win10以上的系统做兼容处理&#xff0c;返回的是Wi…...

2024,Java开发在中国市场还有发展前景吗?

随着2024年的到来&#xff0c;Java作为一种经典而强大的编程语言&#xff0c;依然在中国的软件开发市场中扮演着重要角色。然而&#xff0c;许多人对Java的未来发展前景持有不同的看法。让我们来探讨一下当前情况和未来的走向。 Java程序员真的过剩了吗&#xff1f; 2023年, 各…...

gcc: string.c_str gcc-8.5的一个问题

https://en.cppreference.com/w/cpp/string/basic_string/c_str https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/ common mistakes when using string::c_str()string的这个成员是返回c类型的一个字符数组指针。但是这个指针所对应的地址有赖于string对象的生命周期。所…...

一道笔试题 - 无重复字符的最长子串

老生常谈的一道题&#xff0c;常见并 文章目录 描述预期结果Java代码 描述 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的最长子串的长度。 预期结果 Java代码 import java.util.HashSet; import java.util.Set;public class Demo2 {public static void main(S…...

C#反射的NullReferenceException

背景 xml文件中有些元素的属性被删除&#xff0c;导致文件无法被读取&#xff08;C#&#xff09;。 调试之后发现&#xff0c;因为属性被删除&#xff0c;读进来会保持默认值null&#xff0c;在后续的反射中如果用这个null给字符串属性赋值&#xff0c;会抛异常。 另外发现前面…...

100道C/C++面试题

1. static的作用2. 引用与指针的区别3. .h头文件中的ifndef/define/endif 的作用4 #include<file.h>与#include"file.h"的区别?5 描述实时系统的基本特性6 全局变量和局部变量在内存中是否有区别?如果有&#xff0c;是什么区别?7 什么是平衡二叉树?8 堆栈溢…...

Python(模块)

模块编写完成就可以被其他模块进行调用并使用被调用模块的功能。 import导入方式的语法结构&#xff1a; import模块名称【as别名】 from……import导入方式的语法结构&#xff1a; from模块名称&#xff0c;import变量/函数/类/*&#xff08;*是通配符&#xff09; impor…...

【八股文】Java基础篇

1. 和 equals的区别是什么&#xff1f; 判断两个变量或者实例是否都指向同一内存空间的值&#xff08;不仅值相同&#xff0c;地址也要相同&#xff09;equals是判断两个变量执行的内存空间的值是否相同&#xff08;值相同&#xff0c;地址可以不同&#xff09;&#xff0c;所…...

python rsa如何安装

Python中的一些模块是用一个包管理器来发布的&#xff0c;RSA模块就是&#xff0c;所以首先需要安装setup tools工具。 1、下载文件&#xff1a;ez_setup.py 2、安装&#xff1a; sudo python ez_setup.py 3、下载RSA安装包&#xff1a;rsa-3.1.1-py2.7.egg 4、安装RSA&…...

P10289 [GESP样题 八级] 小杨的旅游

Description 给定一棵 n n n 个点的树&#xff0c;每条边权值均为 1 1 1&#xff0c;树上有 k k k 个关键点&#xff0c;关键点们在 0 0 0 的时间内相互可达&#xff0c; q q q 次询问&#xff0c;求 s → t s\to t s→t 的最短路。 Analysis 考虑暴力建图&#xff0c;…...