当前位置: 首页 > news >正文

【AIGC】ComfyUI入门-使用ComfyUI_MagicClothing插件在生成图片时候出现的问题

最近想自己实现自动换装的工作流,在使用ComfyUI_MagicClothing插件的时候,出现了一个奇怪的问题。这个问题不是插件的问题,是环境配置问题。

问题内容如下:

Exception during processing!!! D:\a_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:891 onnxruntime::python::CreateExecutionProviderInstance CUDA_PATH is set but CUDA wasnt able to be loaded. Please install the correct version of CUDA andcuDNN as mentioned in the GPU requirements page (https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements), make sure they’re in the PATH, and that your GPU is supported.

这个问题我查看了如下几个sdwebui的Issues并没有得到解决:

https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15884
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13292

查看了onnxruntime的Issues也没有得到解决:

https://github.com/microsoft/onnxruntime/issues/13576

查看问

相关文章:

【AIGC】ComfyUI入门-使用ComfyUI_MagicClothing插件在生成图片时候出现的问题

最近想自己实现自动换装的工作流,在使用ComfyUI_MagicClothing插件的时候,出现了一个奇怪的问题。这个问题不是插件的问题,是环境配置问题。 问题内容如下: Exception during processing!!! D:\a_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:891 onnxrunti…...

巴黎奥运会8K转播科技为国产品牌自主研发设计

这个夏天,顶流是属于巴黎奥运会中国队的。 20枚金牌、15枚银牌、12枚铜牌......这个数字正随着赛事推进而不停在增加。赛场之上,中国健儿奋力拼搏、捷报频传,令人热血沸腾;赛场之外,另一支来自中国企业的“奥运选手”…...

【Material-UI】Button 组件中的图标和标签按钮(Buttons with Icons and Label)详解

文章目录 一、基础用法1. 左侧图标(startIcon)2. 右侧图标(endIcon) 二、图标与标签的搭配三、高级用法和最佳实践1. 自定义图标2. 视觉一致性3. 动态图标 四、总结 在现代用户界面设计中,图标在提高用户体验&#xff…...

K个一组翻转链表(LeetCode)

题目 给你链表的头节点 ,每 个节点一组进行翻转,请你返回修改后的链表。 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 的整数倍,那么请将最后剩余的节点保持原有顺序。 你不能只是单纯的改变节点内部的值&…...

2-56 基于matlab的图像融合增强技术

基于matlab的图像融合增强技术。通过原始图像——傅里叶变换——频率域滤波处理——傅里叶变换——增强后的图像。傅立叶变换以及傅立叶反变换.过程就是将空间的信息分解为在频率上的表示,通过傅立叶正反变换的处理,才使得频率域上的处理可以用于图像的增强。程序已调通&#x…...

序列化定义以及使用和注意事项

什么是序列化和反序列化 序列化:是将对象转换为可传输或存储的过程, 反序列化:通常是将字节流或是其他数据格式或源数据转为对象的过程。 序列化的作用 对象的持久化:将对象的状态保存到磁盘或数据库中,以便在程序…...

吴恩达机器学习COURSE1 WEEK3

COURSE1 WEEK3 逻辑回归 逻辑回归主要用于分类任务 只有两种输出结果的分类任务叫做二元分类,例如预测垃圾邮件,只能回答是或否 实际上,在逻辑回归中,我们要做的任务就类似于在数据集中画出一个这样的曲线,用来作为…...

白骑士的PyCharm教学高级篇 3.1 性能分析与优化

系列目录 上一篇:白骑士的PyCharm教学进阶篇 2.5 数据库连接与管理 在软件开发中,性能分析与优化是提高程序运行效率和用户体验的重要环节。PyCharm提供了强大的性能分析工具,帮助你识别和优化代码中的性能瓶颈。本文将详细介绍PyCharm中的代…...

swiper横向轮播(阶梯式滚动轮播)未生效

问题描述 版本问题 使用swiper4以上的版本可以解决该问题,4以上的swiper采用了this指向。...

基于arcpro3.0.2的北斗网格生成简介

基于arcpro3.0.2的北斗网格生成简介 采用2000坐标系、可基于行政区范围 软件可生成第一级到第十级北斗网格经纬跨度 等分 约赤道处距离 第一级 6X4度 60 和A~V 660 km 第二级 30X30分 12X8 …...

网络流算法:最大流问题

引言 最大流问题是网络流中的一个经典问题,其目标是在给定的流网络中找到从源点到汇点的最大流量。最大流问题在交通运输、计算机网络、供应链管理等领域有广泛的应用。本文将详细介绍最大流问题的定义、解决方法以及具体算法实现。 目录 最大流问题的定义Ford-F…...

C++从入门到入土(四)--日期类的实现

目录 前言 日期类的实现 日期的获取 日期的比较 const成员函数 日期的加减 日期的加等 日期的减等 日期的加减 日期的加加减减 日期的相减 流插入和提取的重载 友元 友元的特点 日期类代码 总结 前言 前面我们介绍了C中类和对象的相关知识和六个默认成员函数&…...

【香橙派系列教程】(七)香橙派下的Python3安装

【七】香橙派下的Python3安装 为接下来的Linux图像识别智能垃圾桶做准备。 图像处理使用京东SDK只支持pyhton和Java接口,目的是引入C语言的Python调用,感受大厂做的算法bug 此接口是人工智能接口,京东识别模型是通过训练后的模型,…...

贝叶斯优化算法(Bo)与门控循环单元(GRU)结合的预测模型(Bo-GRU)及其Python和MATLAB实现

### 背景 随着时间序列数据在各个领域(如金融、气象、医疗等)应用的日益广泛,如何准确地预测未来的数据点成为了一个重要的研究方向。长短期记忆网络(LSTM)和门控循环单元(GRU)作为深度学习模型…...

人工智能时代,程序员当如何保持核心竞争力?

目录 前言 一.AI辅助编程对程序员工作的影响 二.程序员应重点发展的核心能力 三.人机协作模式下的职业发展规划 结束语 前言 随着AIGC(如chatgpt、midjourney、claude等)大语言模型接二连三的涌现,AI辅助编程工具日益普及,程序…...

LMDrive 端到端闭环自动驾驶框架

LMDrive,一种新颖的语言引导的端到端闭环自动驾驶框架。LMDrive独特地处理和整合多模态传感器数据与自然语言指令,使车辆能够在现实的指令设置中与人类和导航软件进行交互。 LMDrive由两个主要部分组成: 1)一个视觉编码器&#x…...

P2045 方格取数加强版

Description 给定一个 n n n \times n nn 的矩阵,从左上角出发,可以往右或者往下走,每到达一个方格,就取走上面的数(取过后格子上的数会清零),一共要走 k k k 次,求取到的数之和…...

【Bigdata】OLAP的衡量标准

这是我父亲 日记里的文字 这是他的生命 留下留下来的散文诗 几十年后 我看着泪流不止 可我的父亲已经 老得像一个影子 🎵 许飞《父亲写的散文诗》 OLAP(联机分析处理)系统的衡量标准主要集中在以下几个方面:…...

关于DDOS攻击趋势及防护措施

随着互联网技术的飞速发展,网络安全问题日益成为企业不可忽视的重要议题。分布式拒绝服务(DDoS)攻击作为其中的典型代表,以其强大的破坏力和难以防范的特性,给企业的网络安全带来了巨大挑战。今天我们就来了解下当前DD…...

Apache Flink:一个开源流处理框架

文章目录 引言官网链接Flink 原理概述核心概念 基础使用环境搭建编写 Flink 程序注意事项 高级使用窗口操作状态后端复杂事件处理(CEP)与 Kafka 集成 优点结论 引言 Apache Flink 是一个开源流处理框架,专为高吞吐量、低延迟的实时数据处理设…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM&#xff09…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...