当前位置: 首页 > news >正文

AI智能化赋能电商经济,守护消费净土,基于轻量级YOLOv8n开发构建公共生活景下的超大规模500余种商品商标logo智能化检测识别分析系统

在数字经济浪潮的推动下,全力发展新质生产力已成为当今社会发展的主旋律。各行各业正经历着前所未有的变革,其中,电商行业作为互联网经济的重要组成部分,更是以惊人的速度重塑着商业格局与消费模式。AI智能化技术的深度融合,不仅极大地提升了电商平台的运营效率与服务质量,更为保障消费者权益开辟了新的路径。
随着互联网技术的飞速发展,电商行业迎来了前所未有的繁荣。电商平台如雨后春笋般涌现,为成千上万的商家提供了展示商品、触达消费者的广阔舞台。网红经济、网商经济的兴起,更是让商品流通更加高效,市场活力得到充分释放。然而,在这一片繁荣景象之下,假冒伪劣、仿冒产品等问题也随之而来,成为制约电商行业健康发展的顽疾。面对这一挑战,AI智能化技术成为了破局的关键。通过深度学习、图像识别等先进技术,电商平台能够实现对商品信息的精准识别与高效审核。本文所述的海量产品logo自动化智能检测识别系统,正是这一理念的生动实践。该系统在商家提交商品信息时,自动对商品logo进行扫描分析,快速匹配商家的售货资格,有效拦截非法货源的录入请求。这一举措,不仅从源头上杜绝了假冒伪劣产品的流入,还为消费者营造了一个更加安全、放心的购物环境。AI智能化技术的应用,不仅极大地提升了审核效率与准确性,更解放了平台审核人员的人力。传统的人工审核方式不仅耗时费力,且难以应对海量数据的处理需求。而智能检测识别系统则能够实现全天候、高响应、高精度的自动化审核,确保每一笔交易都经过严格把关。这不仅减轻了人工审核的负担,还提升了平台的整体运营效率与服务质量。
本文正是基于这样的考虑,想要从实践性质实验的角度出发开发构建大规模的生活场景下常见商品商标logo智能化检测分析系统,首先看下实例效果:

在我们前面的系统博文中,也有做过一些关于常见商品商标logo检测分析的工作,但是所涉及的商品logo类别数量是比较少的,且构建的数据量也不大,感兴趣的话可以自行移步阅读即可:

《看图找LOGO,基于YOLOv5系列【n/m/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统》

《看图找LOGO,基于YOLOv7【tiny/l/x】模型开发构建生活场景下的商品商标LOGO检测识别系统》

《看图找LOGO,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统》

《看图找LOGO,基于YOLOv9系列【gelan/gelan-c/gelan-e/yolov9/yolov9-c】参数模型开发构建生活场景下的商品商标LOGO检测识别系统》

本文的主要想法是想要基于经典的的YOLOv8系列中最为轻量级的n系列的模型来开发构建公共生活场景下的常见商品商标logo智能化检测识别系统,接下来看下实例数据:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过2.6w的star量了,马上就要突破2.7w了。

官方提供的基于COCO数据集的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

除了常规的目标检测任务之外,还有旋转目标检测,如下:

Modelsize
(pixels)
mAPtest
50
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-obb102478.0204.773.573.123.3
YOLOv8s-obb102479.5424.884.0711.476.3
YOLOv8m-obb102480.5763.487.6126.4208.6
YOLOv8l-obb102480.71278.4211.8344.5433.8
YOLOv8x-obb102481.361759.1013.2369.5676.7

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们使用的是最为轻量级的yolov8n模型,配置文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 10   # number of classes
scales: [0.33, 0.25, 1024] # YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

里因为时间有限,暂时没有能够开发完成五款不同参数量级的模型来进行综合全面的对比分析,后面找时间再进行,这里选择的是YOLOv8下最为轻量级的n系列的模型,等待训练完成后我们来详细看下结果。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【混淆矩阵】

【训练可视化】

【Batch实例】

由于数据量庞大,整体的训练计算量也是很大的,实例训练输出如下:

这也是为啥我们在模型选型上选择的是最为轻量级的n系列的模型来做实践尝试了,如果选择参数量级更大的模型最终的时间消耗势必更大。

AI智能化技术的广泛应用,是电商经济新质生产力的最好展现。它不仅推动了电商行业的转型升级,更为整个社会的数字化进程注入了强劲动力。在未来的发展中,随着技术的不断进步与应用的不断深化,电商行业将呈现出更加智能化、个性化、便捷化的特点。而这一切的实现,都离不开AI智能化技术的有力支撑。AI智能化技术正引领着电商行业迈向一个新的发展阶段。通过海量产品logo自动化智能检测识别系统等创新应用,电商平台不仅能够有效遏制假冒伪劣产品的泛滥,更能够为消费者提供更加优质、安全的购物体验。这不仅是电商经济新质生产力的体现,更是对消费者权益的尊重与保护。我们有理由相信,在未来的日子里,随着技术的不断进步与应用的不断深化,电商行业将绽放出更加璀璨的光芒。

相关文章:

AI智能化赋能电商经济,守护消费净土,基于轻量级YOLOv8n开发构建公共生活景下的超大规模500余种商品商标logo智能化检测识别分析系统

在数字经济浪潮的推动下,全力发展新质生产力已成为当今社会发展的主旋律。各行各业正经历着前所未有的变革,其中,电商行业作为互联网经济的重要组成部分,更是以惊人的速度重塑着商业格局与消费模式。AI智能化技术的深度融合&#…...

C语言菜鸟入门·数据结构·链表超详细解析

目录 1. 单链表 1.1 什么是单链表 1.1.1 不带头节点的单链表 1.1.2 带头结点的单链表 1.2 单链表的插入 1.2.1 按位序插入 (1)带头结点 (2)不带头结点 1.2.2 指定结点的后插操作 1.2.3 指定结点的前插操作 1.3 …...

C# Unity 面向对象补全计划 七大原则 之 依赖倒置原则 (DIP)难度:☆☆ 总结:多抽象,多接口,少耦合

本文仅作学习笔记与交流,不作任何商业用途,作者能力有限,如有不足还请斧正 本系列作为七大原则和设计模式的进阶知识,看不懂没关系 请看专栏:http://t.csdnimg.cn/mIitr,查漏补缺 1.依赖倒置原则 (DIP) 这…...

大模型面试问题

综合基础 1、讲讲制作一个LLM的流程以及各阶段的作用 2、发现模型性能不好,如何从各个阶段去排查问题 查看各阶段中是否有对应训练数据,然后再向下排查。预训练 1、Transfomer模型介绍一下 2、讲讲 Q、K、V 3、Transfomer模型中Encoder输出给Decoder的…...

keeplive配置详解与haproxy配置详解

一、keepalive相关知识 1.1 keepalive介绍 keepalive即LVS集群当中的高可用架构,只是针对调度器的高可用。是高可用的HA架构。 keepalive就是基于VRRP协议来实现LVS高可用的方案。 1、组播地址 224.0.0.18,根据组播地址进行通信,主备之间发…...

vivado里的LUT、LUTRAM、FF、BRAM、DSP、IO、BUFG、MMCM资源介绍

vivado里的LUT、LUTRAM、FF、BRAM、DSP、IO、BUFG、MMCM资源介绍 提示:以下是本篇文章正文内容,写文章实属不易,希望能帮助到各位,转载请附上链接。 vivado实现电路用到的资源类型 LUT(Look-Up Table)&am…...

window关闭端口占用

文章目录 一、打开命令行,输入命令,得到进程号二、找到其端口并杀死该端口总结 一、打开命令行,输入命令,得到进程号 winr打开命令行,输入命令 netstat -ano | findstr 端口号得到端口号 二、找到其端口并杀死该端…...

Java:类和对象

类和对象 类(Class)类的定义 对象(Object)对象的创建 构造方法(Constructor)构造方法的定义 继承(Inheritance)继承的示例 总结示例一设想一个场景:创建一个虚拟动物园一…...

Pandas数据分析案例之用户购买记录分析

文章目录 数据分析之用户购买记录分析第一部分:数据类型处理数据加载观察数据查看数据的数据类型数据中是否存储在缺失值将order_dt转换成时间类型查看数据的统计描述计算所有用户购买商品的平均数量计算所有用户购买商品的平均花费 在源数据中添加一列表示月份:ast…...

串口调试可能遇见的常见问题和排查方法

串口UART作为嵌入式应用和通讯领域中最常用的接口之一,接口协议虽然简单,但在实际应 用中不同设备之间的通讯也会存在各种小问题,下面对使用中各种常见的问题做下总结和梳 理,可作为调试参考。 01串口通信常见问题 串口通信乱码…...

运放学习提纲

目的:给初入硬件的朋友一个系统性学习运放的参考方向,避免像无头苍蝇那般 一:偏置电流 1.1. 为什么是输入偏置电流? 1.2. 什么是输入偏置电流? 1.3. 怎么搜索资料?怎么把 ADI 模型导 入Multisim &#…...

nvidia系列教程-AGX-Orin系统刷机及备份

目录 前言 一、准备工作 二、AGX Orin 系统刷机步骤 三、AGX Orin 系统备份 总结 前言 NVIDIA AGX Orin 是一款高性能的嵌入式计算平台,专为边缘计算和 AI 应用而设计。为了确保系统的稳定性和适应不同的应用场景,用户可能需要对 AGX Orin 进行系统刷…...

将 Mojo 与 Python 结合使用

Mojo 允许您访问整个 Python 生态系统,但环境可能会因 Python 的安装方式而异。花些时间准确了解 Python 中的模块和包的工作原理是值得的,因为有一些复杂情况需要注意。如果您以前在调用 Python 代码时遇到困难,这将帮助您入门。 Python 中的模块和包 让我们从 Python 开始…...

Unrecognized option: --add-opens=java.base/java.lang=ALL-UNNAMED

Unrecognized option: --add-opensjava.base/java.langALL-UNNAMED Error: Could not create the Java Virtual Machine. Error: A fatal exception has occurred. Program will exit. Disconnected from server 报错原因:这里我是启动一个SpringBoot项目的时候报这…...

js与ios、安卓原生方法互调。

注意方法名与参数需要与对方约束 1.js调用安卓原生方法 window.android.方法名(要传递的参数) 调用安卓方法并且传递参数过去:window.WebAppInterface.安卓方法("参数") window.安卓暴露的方法function(安卓传递过来的参数){} …...

C++——多态经典案例(二)制作饮品

案例:制作饮品的步骤是差不多一样的,假设都有四步,打开包装Open、煮水Boil、放杯子里面PutInCup、放佐料PutSomething、喝Drink 利用多态,制作茶和咖啡等饮品 分析:定义一个抽象类,纯虚函数包括Open、Boil…...

内网域森林之ProxyNotShell漏洞利用

点击星标,即时接收最新推文 本文选自《内网安全攻防:红队之路》 在渗透测试过程,如果目标环境存在Exchange服务器,我们也需要测试是否存在已知的远程命令执行漏洞,这里首先介绍ProxyNotShell。 ProxyNotShell和之前…...

SpringBoot基础 第一天

SpringBoot配置的文件名是固定的:application.yml application.properties YAML:以数据为中心 比Json xml更适合做配置文件 YAML语法: 1 字面量:普通值(字符串 布尔值 数字) (1) k: v (2) " "不会转义 会转义 2 对象,map(属性和值) (1)…...

【C/C++】C语言和C++实现Stack(栈)对比

我们初步了解了C,也用C语言实现过栈,就我们当前所更新过的有关C学习内容以栈为例子,来简单对比一下C语言和C。 1.C中栈的实现 栈的C语言实现在【数据结构】栈的概念、结构和实现详解-CSDN博客 ,下面是C实现的栈, 在St…...

mysql定时备份脚本

概述 整理Mysql数据库备份脚本,用在生产环境数据库定时备份。 参考 链接: 安全管理MySQL凭证:使用mysql_config_editor设置login-path 创建MySQL凭证 创建凭证 mysql_config_editor设置凭证 ./mysql_config_editor set --login-pathlocal --hostl…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

虚幻基础:角色旋转

能帮到你的话,就给个赞吧 😘 文章目录 移动组件使用控制器所需旋转:组件 使用 控制器旋转将旋转朝向运动:组件 使用 移动方向旋转 控制器旋转和移动旋转 缺点移动旋转:必须移动才能旋转,不移动不旋转控制器…...