吴恩达老师机器学习作业-ex7(聚类)
导入库,读取数据,查看数据类型等进行分析,可视化数据
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio#读取数据
path = "./ex7data2.mat"
data = sio.loadmat(path)
# print(type(data))
# print(data.keys())
X = data.get("X")
# print(X.shape)
# print(X)
# print(type(X))#可视化数据
plt.scatter(X[:,0],X[:,1])
plt.show()

簇分配
在该函数中,设置一个minis表示样本与各个聚类中心点的距离,所以最开始初始化为一个比较大的数值。第一个for循环为迭代每一个样本,第二个for循环迭代每一个聚类中心点,已便找到最近的聚类中心点。
def means_classification(X,centros):m = len(X)n = len(centros)idx = np.zeros(m)for i in range(m):minis = 100000for j in range(n):s = np.sum(np.power((X[i,:]-centros[j,:]),2))if s < minis:minis = sidx[i] = jreturn idx
计算聚类中心
使用平均值计算聚类中心
def means_center(X,K,idx):centors = []for i in range(K):indicates = np.where(idx == i)centors_i = np.mean(X[indicates],axis=0)centors.append(centors_i)return centors
初始化聚类中心
随机生成三个整数(样本范围内),然后当作下标索引,找到三个样本的点作为初始化的聚类中心。
def init_centros(X,K):m = len(X)random_int = []for i in range(K):random_int_i = np.random.randint(0, m)random_int.append(random_int_i)random_centros = []for k in random_int:random_centros.append(X[k])return np.array(random_centros)
手动定义聚类数量为3
K = 3
多次迭代,运行Kmeans算法
def run_Kmeans(X,K,times):for i in range(times):centros = init_centros(X, K)idx = means_classification(X, centros)centros = means_center(X, K, idx)return idx,centros
绘制出聚类算法后的散点图
def plot_kmeans(X,idx):cluster1 = X[np.where(idx == 0)[0], :]cluster2 = X[np.where(idx == 1)[0], :]cluster3 = X[np.where(idx == 2)[0], :]fig,ax = plt.subplots()ax.scatter(cluster1[:, 0], cluster1[:, 1], c="r", label="cluster1")ax.scatter(cluster2[:, 0], cluster2[:, 1], c="g", label="cluster2")ax.scatter(cluster3[:, 0], cluster3[:, 1], c="b", label="cluster3")plt.show()idx,centros = run_Kmeans(X,K,100)
plot_kmeans(X,idx)

注意这里有个问题,随机初始化时,最后好几次是得到了局部最优,该题目可以先手动初始化聚类中心。
centros = np.array([[3,3],[6,2],[8,5]])
相关文章:
吴恩达老师机器学习作业-ex7(聚类)
导入库,读取数据,查看数据类型等进行分析,可视化数据 import matplotlib.pyplot as plt import numpy as np import scipy.io as sio#读取数据 path "./ex7data2.mat" data sio.loadmat(path) # print(type(data)) # print(data…...
lombok 驼峰命名缺陷,导致后台获取参数为null的解决办法
1.问题: 下面是我定义一个请求类的属性,采用Lombok注解,自动构建get和set方法。 Schema(description "父组织编码", requiredMode Schema.RequiredMode.REQUIRED) private String pOrgCode; 遇到这种命名,你会发现在…...
【dockerpython】亲测有效!适合新手!docker创建conda镜像+容器使用(挂载、端口映射、gpu使用)+云镜像仓库教程
文章目录 docker基本概念简介配置镜像加速源创建conda镜像1. 写 Dockerfile文件2. 创建镜像3. 创建容器并测试 容器的使用1. wsl挂载2. 端口映射3. 补充-gpu 云镜像仓库使用1. 登录2. 将本地镜像上传至云镜像仓库3. 从云镜像仓库下载镜像到本地 docker基本概念简介 简单来讲&a…...
矩阵,求矩阵秩、逆矩阵
求矩阵秩的方法: 高斯消元法:通过行变换将矩阵化为行阶梯形矩阵,然后数非零行的数量。LU分解:通过分解矩阵成上下三角矩阵,计算非零对角元素的数量。SVD分解:通过奇异值分解,计算非零奇异值的数…...
指针和const
const int* ptr,int* const ptr,const int* const ptr 这三种指针定义有什么区别?用法有什么不同? 指向的地址是否可变指向的地址上存储的内容是否可变const属性const int* ptr可改变不可改*ptr具有const属性int* const pts不可改…...
基于C#调用文心一言大模型制作桌面软件(可改装接口)
目录 开发前的准备账号注册应用创建应用接入 开始开发创建项目设计界面使用 AK,SK 生成鉴权签名窗体代码 百度智能云千帆大模型平台什么是百度智能云千帆大模型平台模型更新记录 开发前的准备 账号注册 访问百度智能云平台,通过百度账号登录或手机号验证…...
VScode插件安装
一、常用插件 Chinese (Simplified) (简体中文) Language Pack for Visual Studio Code vscode 中文插件 Auto Rename Tag 闭合标签 Path Intellisense 一个非常实用的工具,它提供了文件路径的自动补全功能,可以极大地提高开发效率。路径自动补全、…...
《Milvus Cloud向量数据库指南》——高可用黄金标准:深入解析与业务策略考量
高可用黄金标准:深入解析与业务策略考量 在信息技术飞速发展的今天,高可用性(High Availability, HA)已成为衡量企业IT系统性能与稳定性的关键指标之一。它不仅仅关乎技术层面的优化与配置,更是企业保障业务连续性、提升客户体验、增强市场竞争力的重要基石。尽管高可用性…...
sqli-labs注入练习1,2关
sqli-labs第一关 判断是否存在sql注入 可见,根据输入数字的不同,结果也不同 判断sql语句是否是拼接,且是字符型还是数字型 由上可见,这关指定是字符型且存在sql注入漏洞 使用联合注入 第一步:首先知道表格有几列&…...
B站宋红康JAVA基础视频教程个人笔记chapter04
文章目录 1.IDEA安装好后的一些设置和学习1.1关于IDEA内部jdk版本的设置1.2 一些样式以及快捷键的常用设置(强烈推荐) 2.工程与模块管理3.如何彻底的卸载IDEA 1.IDEA安装好后的一些设置和学习 1.1关于IDEA内部jdk版本的设置 1.File—>Project Struc…...
关于java枚举为什么可以拿来当单例实现这件事看看ikun怎么说
为什么枚举可以保证单例 枚举可以保证单例的原因主要可以归结为以下几个方面: 1. 枚举的实例化过程 线程安全:枚举的实例化过程是由JVM控制的,在类加载时就完成了枚举常量的初始化。由于这个初始化过程是线程安全的(JVM在加载枚…...
Hugging Face下载模型
1、安装 huggingface-cli pip install -U huggingface_hub 2、设置环境变量(如果你打算使用 HF_ENDPOINT 环境变量来指定下载镜像站点): export HF_ENDPOINThttps://hf-mirror.com 3、使用 huggingface-cli 下载模型: 使用下面的命令来下…...
JVM-垃圾回收
什么是JVM的垃圾回收? 垃圾回收(Garbage Collection, GC)是Java虚拟机(JVM)自动管理内存的一种机制,其目的是自动回收不再使用的对象所占用的内存空间,以防止内存泄漏和提升内存利用效率。 运…...
8.C基础_指针基础
指针概述 1、定义与初始化 形式:<数据类型>* <变量名> <地址>; int a 10; int *p &a; 指针的类型不同,p时的偏移地址量不同,偏移地址 sizeof(类型)Byte 注意点: 指针的类型要与数据的类型保持一…...
安泰功率放大器使用注意事项有哪些内容和要求
功率放大器是一种广泛应用于音频系统、通信系统和实验室等领域的设备,其作用是将输入信号放大到足够大的功率输出。为了安全使用功率放大器并保证其性能和寿命,以下是一些使用功率放大器时需要注意的事项和要求。 一、选择适当的功率放大器: …...
windows下,使用vs code远程连接云服务器【以CentOS7为例】
windows下,使用vs code远程连接云服务器 1. 下载VS code并准备相关插件2. 使用Remote - SSH远程控制Linux 1. 下载VS code并准备相关插件 1. VS code官网: 下载地址:https://code.visualstudio.com/Download下载合适版本的vs code。 2. 推荐…...
x264 中像素扩边算法源码分析
介绍 在视频编码中,特别是在使用x264这样的H.264/MPEG-4 AVC编码器时,像素扩边(或称为边缘扩展)是一项重要的预处理步骤。像素扩边的目的是在帧的边缘添加额外的像素,这样在编码过程中可以应用滤波器,如去块滤波器(deblocking filter)和水平/垂直滤波器,而不会受到帧…...
数据结构——双链表详解(超详细)
前言: 小编在之前已经写过单链表的创建了,接下来要开始双链表的讲解了,双链表比单链表要复杂一些,不过确实要比单链表更好进行实现!下面紧跟小编的步伐,开启今天的双链表之旅! 目录 1.概念和结构…...
银行项目利润问题(贪心思想)
import java.util.Comparator; import java.util.PriorityQueue;public class test32 {//输入正数数组costs、正数数组profits、正数K、正数M//costs[i]表示i号项目花费,profits[i]表示i号项目在扣除花费后还挣的钱//K表示有多少项目//M表示初始资金//每做完一个项目…...
SQLite
SQLite Insert 插入 语句 方式1: INSERT INTO TABLE_NAME [(column1, column2, column3,...columnN)] VALUES (value1, value2, value3,...valueN); 方式2: INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN); (如果要…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
Xcode 16 集成 cocoapods 报错
基于 Xcode 16 新建工程项目,集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...
[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
Canal环境搭建并实现和ES数据同步
作者:田超凡 日期:2025年6月7日 Canal安装,启动端口11111、8082: 安装canal-deployer服务端: https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...
React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?
系列回顾: 在上一篇《React核心概念:State是什么?》中,我们学习了如何使用useState让一个组件拥有自己的内部数据(State),并通过一个计数器案例,实现了组件的自我更新。这很棒&#…...
【Java多线程从青铜到王者】单例设计模式(八)
wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本,sleep也是可以指定时间的,也就是说时间一到就会解除阻塞,继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒),wait能被notify提前唤醒…...
信息系统分析与设计复习
2024试卷 单选题(20) 1、在一个聊天系统(类似ChatGPT)中,属于控制类的是()。 A. 话语者类 B.聊天文字输入界面类 C. 聊天主题辨别类 D. 聊天历史类 解析 B-C-E备选架构中分析类分为边界类、控制类和实体类。 边界…...
