当前位置: 首页 > news >正文

leetcode787. K 站中转内最便宜的航班——优先队列优化的Dijkstra算法+剪枝

题目

leetcode787. K 站中转内最便宜的航班

题目分析

给定一个城市图,每个城市通过航班与其他城市相连。每个航班都有一个起点、终点和价格。你需要找到从起点城市 src 到终点城市 dst 的最便宜路径,但这条路径最多只能经过 k 个中转站。你需要返回这种路径的最低价格,如果不存在这样的路径,则返回 -1。

输入:

n:城市的数量
flights:航班的列表,每个航班用 [fromi, toi, pricei] 表示,表示从城市 fromi 到城市 toi 的航班价格为 pricei
src:起点城市
dst:终点城市
k:最多经过的中转站数

输出:

最便宜的价格,如果没有满足条件的路径,则输出 -1

思路分析

我看到这道题第一时间想的就是dijkstra算法,因为我也不会别的算法。
对于k的限制,我想到可以在优先队列中维护一个当前层级的变量,当到达的层级大于k时,就不再扩展了。

但是我没考虑到k的限制可能会导致最短路径无法达成,并且由于dijkstra算法的性质,其他路线也被直接丢弃了

于是我尝试不使用visited数组记录访问过的节点,将每个节点的后继节点都加入队列中,只有层级大于k时,才会跳过。此时算法退化成了变体的广度优先搜索算法,会搜索每一条在中转数在k内的路径。

但是,当数据量大了之后,显然这个算法会超时。

继续思考,发现dijkstra算法找到的是最优路径,但是其中转节点可能很多,而真正的路径只可能在中转节点比最优路径少的路径里,其他中转节点多于最优路径的路径完全可以剪枝,因为他们的费用不可能更低。

按照这个思路,只需要维护一个每个节点的最小中转数,任何多于最小中转数的路径都可以剪枝,因为对于每一个被剪枝的路径来说,在其之前都已经有至少一条路径价格比它低的同时中转数还要小于它

代码

class Solution:def findCheapestPrice(self, n: int, flights: List[List[int]], src: int, dst: int, k: int) -> int:# 建立邻接表maps=[[]  for _ in range(n)]for edge in flights:maps[edge[0]].append(edge[1:])#最小堆模拟优先队列,(价格,节点编号,层级)pq=[(0,src,0)]#当前每个节点的中转数记录visit=[n+1]*nwhile pq:w,p,c=heappop(pq)#过滤超过层级k的节点,剪枝中转城市多余当前节点记录的点if c>=visit[p] or c>k+1:continueif  p == dst:return w# 直接等就可以,比它大的到不了这一步visit[p]=c# 将后继节点加入优先队列for point in maps[p]:heappush(pq,(w + point[1],point[0],c+1))return  -1

提交

一直交刷成绩QAQ
在这里插入图片描述


2024/8/8

相关文章:

leetcode787. K 站中转内最便宜的航班——优先队列优化的Dijkstra算法+剪枝

题目 leetcode787. K 站中转内最便宜的航班 题目分析 给定一个城市图,每个城市通过航班与其他城市相连。每个航班都有一个起点、终点和价格。你需要找到从起点城市 src 到终点城市 dst 的最便宜路径,但这条路径最多只能经过 k 个中转站。你需要返回这…...

赛盈分销亮相AI科技大会暨亚马逊新增长大会,与企业共话跨境品牌发展新机遇!

八月开端,由知无不言与xmars和钱老师课堂联合主办的2024年AI科技大会暨亚马逊新增长大会在深圳宝安顺利开展,为期2天的跨境峰会吸引了上千位优秀的卖家朋友前来感受一场盛夏大狂欢。在本次跨境峰会里,邀请了多位不同领域的先锋人物&#xff0…...

Nacos-配置中心

1.为什么要使用配置中心&#xff1f; 2.常用的配置中心组件&#xff1f; 3.如何使用&#xff1f; 在配置中心创建配置文件 启动一个单列的nacos服务 点击发布 在微服务中使用 添加依赖 <!--nacso配置中心的依赖--><dependency><groupId>com.alibaba.cloud&l…...

ava中的文件操作、IO流、递归和字符集

目录 File类的使用 创建File对象 创建和删除文件 遍历文件夹 IO流 字节流 读取文件 字符流 读取文本文件 写入文本文件 递归 计算阶乘 文件搜索 字符集 编码与解码 File类的使用 在Java中&#xff0c;File类用于表示文件和目录的路径。它提供了一些方法来创建、删…...

生成式人工智能安全评估体系构建

文章目录 前言一、人工智能安全治理的现状1.1 国际安全治理现状1.2 国内安全治理现状二、构建人工智能安全评估体系1.1 需要对生成式人工智能技术的安全性、可靠性、可控性、公平性等维度进行全面的考量。1.2 应对生成式人工智能全维度风险。1.3 在体系化应对框架中,应明确法律…...

NRBO-XGBoost分类 基于牛顿-拉夫逊优化算法[24年最新算法]-XGBoost多特征分类预测+交叉验证

NRBO-XGBoost分类 基于牛顿-拉夫逊优化算法[24年最新算法]-XGBoost多特征分类预测交叉验证 多输入单输出&#xff09; matlab代码 程序已调试好&#xff0c;无需更改代码替换数据直接使用&#xff01;&#xff01;&#xff01;数据格式为excel格式&#xff01;需要定制可私&a…...

synchronized实现原理及优化

一、概述 线程安全在并发编程中是重要关注点&#xff0c;造成线程安全问题的主要诱因有两个&#xff1a;一是存在共享数据&#xff08;也称临界资源&#xff09;&#xff0c;二是存在多个线程共同操作共享数据。synchronized关键字能够保证在同一时刻只有一个线程可以执行某个…...

NLP 之词的表示与语言模型

表示的基本原理&#xff1a; 机器无法理解文字&#xff0c;却能进行复杂的数学运算——神经网络只要够深、够复杂&#xff0c;就能拟合足够复杂的数学模式。把文字嵌入&#xff08;embed&#xff09;到一个向量空间中去。 词表示&#xff08;Word Representation&#xff09;…...

每天一个数据分析题(四百七十一)- 假设检验

下列对假设检验的描述合理的是? A. 备择假设是研究者想收集证据予以支持的假设 B. 原假设是研究者想收集证据予以推翻的假设 C. 原假设是研究者想收集证据予以支持的假设 D. 备择假设是研究者想收集证据予以推翻的假设 数据分析认证考试介绍&#xff1a;点击进入 题目来…...

《系统架构设计师教程(第2版)》第13章-层次式架构设计理论与实践-04-数据访问层设计

文章目录 1. 五种数据访问模式1.1 在线访问1.2 DAO1.3 DTO1.4 离线数据模式1.5 对象/关系映射 (O/R Mapping) 2. 工厂方法模式在数据访问层应用3 ORM、Hibernate与CMP2.0设计思想3.1 ORM3.2 Hibernate1&#xff09;概述2&#xff09; Hibernate的架构&#xff08;2023年的考题&…...

【视觉SLAM】 十四讲ch7习题

简介 本文主要内容是《视觉SLAM十四讲》&#xff08;第二版&#xff09;第7章的习题解答&#xff0c;并介绍了在解答习题中的一下思考和总结的经验。本文代码部分参考了&#xff1a;HW-of-SLAMBOOK2 1、除了本书介绍的ORB特征点&#xff0c;你还能找到哪些特征点&#xff1f;…...

K-近邻算法(二)

三、 kd 树 问题导⼊&#xff1a; 实现k 近邻算法时&#xff0c; 主要考虑的问题是如何对训练数据进⾏快速 k 近邻搜索。这在特征空间的维数⼤及训练数据容量⼤时尤其必要。 k 近邻法最简单的实现是线性扫描&#xff08;穷举搜索&#xff09;&#xff0c;即要计算输⼊实例与…...

WPF学习(2)-UniformGrid控件(均分布局)+StackPanel控件(栈式布局)

UniformGrid控件&#xff08;均分布局&#xff09; UniformGrid和Grid有些相似&#xff0c;只不过UniformGrid的每个单元格面积都是相等的&#xff0c;不管是横向的单元格&#xff0c;或是纵向的单元格&#xff0c;它们会平分整个UniformGrid。 UniformGrid控件提供了3个属性…...

ANTSDR E310

ANTSDR E310是一款由微相科技有限公司&#xff08;MicroPhase&#xff09;推出的软件无线电&#xff08;SDR&#xff09;平台&#xff0c;专为现场部署设计。以下是对ANTSDR E310的详细介绍&#xff1a; 一、主要特点 独立运行的软件无线电&#xff1a;ANTSDR E310具备独立运…...

MySQL 5.7 DDL 与 GH-OST 对比分析

作者&#xff1a;来自 vivo 互联网存储研发团队- Xia Qianyong 本文首先介绍MySQL 5.7 DDL以及GH-OST的原理&#xff0c;然后从效率、空间占用、锁阻塞、binlog日志产生量、主备延时等方面&#xff0c;对比GH-OST和MySQL5.7 DDL的差异。 一、背景介绍 在 MySQL 数据库中&…...

【Python】爬取网易新闻今日热点列表数据并导出

1. 需求 从网易新闻的科技模块爬取今日热点的列表数据&#xff0c;其中包括标题、图片、标签、发表时间、路径、详细文本内容&#xff0c;最后导出这些列表数据到Excel中。 网易科技新闻网址&#xff1a;https://tech.163.com 2. 解决步骤 2.1 前期准备 爬虫脚本中需要引用…...

软件设计之HTML5

软件设计之HTML5 【狂神说Java】HTML5完整教学通俗易懂 学习内容&#xff1a; 软件开发技能点参照&#xff1a;软件开发&#xff0c;小白变大佬&#xff0c;这套学习路线让你少走弯路是认真的&#xff0c;欢迎讨论 软件开发技能点参照&#xff1a;Java学习完整路线&#xff…...

CnosDB 元数据集群 – 分布式时序数据库的大脑

CnosDB 是一个分布式时序数据库系统&#xff0c;其中元数据集群是核心组件之一&#xff0c;负责管理整个集群的元数据信息。 1. 概述 CnosDB 是一个分布式时序数据库系统&#xff0c;其中元数据集群是核心组件之一&#xff0c;负责管理整个集群的元数据信息。元数据包括数据库…...

白骑士的Matlab教学进阶篇 2.5 Simulink

Simulink是MATLAB的扩展工具&#xff0c;提供了一个图形化的建模和仿真环境。它广泛应用于系统设计、仿真、自动控制、信号处理等领域。本文将详细介绍Simulink的简介与基本使用、建立与仿真模型、控制系统设计与仿真、与MATLAB的集成。 Simulink简介与基本使用 什么是Simuli…...

linux安装anaconda

参考 如何在Linux服务器上安装Anaconda&#xff08;超详细&#xff09;_linux安装anconda-CSDN博客 官网 Index of / 安装网站 https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Lin…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...