当前位置: 首页 > news >正文

图像变换算法

1.1 傅里叶变换 (Fourier Transform)

介绍

傅里叶变换是一种数学变换,用于将图像从空间域转换到频率域。它广泛应用于图像去噪和滤波。

原理

傅里叶变换将图像表示为频率成分的叠加,使得频率成分可以独立处理。通过对频率成分的分析和处理,可以实现对图像的去噪、增强和其他操作。

公式

连续傅里叶变换:

离散傅里叶变换(DFT):

案例1

使用Python和OpenCV进行傅里叶变换。

代码解析
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行傅里叶变换
dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 计算频谱图
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))# 显示原始图像和频谱图
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()

案例2:低通滤波器应用

在医学图像处理中,经常使用傅里叶变换进行低通滤波,以去除图像中的噪声。

代码解析
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行傅里叶变换
dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 创建一个低通滤波器
rows, cols = image.shape
crow, ccol = rows // 2 , cols // 2
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1# 应用滤波器并逆变换
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])# 显示结果
plt.subplot(131), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(132), plt.imshow(mask[:,:,0], cmap='gray')
plt.title('Mask'), plt.xticks([]), plt.yticks([])plt.subplot(133), plt.imshow(img_back, cmap='gray')
plt.title('After LPF'), plt.xticks([]), plt.yticks([])plt.show()

生活场景案例

傅里叶变换在图像压缩、去噪和医学成像中应用广泛。

总结

傅里叶变换将图像从空间域转换到频率域,便于频率分析和处理。

1.2 离散余弦变换 (Discrete Cosine Transform, DCT)

介绍

离散余弦变换(DCT)用于将图像分解为不同频率的余弦分量,广泛应用于图像压缩,如JPEG。

原理

DCT将图像表示为余弦函数的线性组合,有效地集中能量,使得大部分能量集中在较少的DCT系数中,便于压缩。

公式

一维离散余弦变换:

案例:JPEG图像压缩

在JPEG图像压缩中,DCT用于将图像块分解为频率成分,然后仅保留低频分量进行压缩。

代码解析
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行离散余弦变换
dct = cv2.dct(np.float32(image))# 显示原始图像和DCT结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(dct, cmap='gray')
plt.title('DCT Image'), plt.xticks([]), plt.yticks([])plt.show()

生活场景案例

DCT在JPEG图像压缩中广泛应用,通过压缩高频成分减少数据量。

总结

DCT将图像分解为余弦分量,实现能量集中和数据压缩。

1.3 小波变换 (Wavelet Transform)

介绍

小波变换用于多分辨率分析,可以在不同尺度上分析图像特征,广泛应用于图像压缩和去噪。

原理

小波变换通过小波函数将图像分解为不同尺度和位置的子带,可以有效地表示图像中的局部特征。

公式

连续小波变换:

案例

使用Python和PyWavelets进行小波变换。

代码解析
import pywt
import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行小波变换
coeffs2 = pywt.dwt2(image, 'bior1.3')
LL, (LH, HL, HH) = coeffs2# 显示结果
plt.figure(figsize=(12, 3))
titles = ['Approximation', ' Horizontal detail', 'Vertical detail', 'Diagonal detail']
for i, a in enumerate([LL, LH, HL, HH]):plt.subplot(1, 4, i + 1)plt.imshow(a, cmap='gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()

案例2:图像去噪

小波变换可以用于图像去噪,通过分解图像,滤除高频噪声并重构图像。

代码解析
import pywt
import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行小波变换
coeffs2 = pywt.dwt2(image, 'bior1.3')
LL, (LH, HL, HH) = coeffs2# 进行去噪处理
coeffs2_filtered = LL, (LH * 0.5, HL * 0.5, HH * 0.5)# 重构图像
image_reconstructed = pywt.idwt2(coeffs2_filtered, 'bior1.3')# 显示结果
plt.subplot(131), plt.imshow(image, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])plt.subplot(132), plt.imshow(LL, cmap='gray')
plt.title('Approximation'), plt.xticks([]), plt.yticks([])plt.subplot(133), plt.imshow(image_reconstructed, cmap='gray')
plt.title('Denoised Image'), plt.xticks([]), plt.yticks([])plt.show()

生活场景案例

小波变换在医学图像处理、数据压缩和去噪等领域有重要应用。

总结

小波变换通过多分辨率分析,有效处理图像中的细节和特征,实现压缩和去噪。

相关文章:

图像变换算法

1.1 傅里叶变换 (Fourier Transform) 介绍 傅里叶变换是一种数学变换,用于将图像从空间域转换到频率域。它广泛应用于图像去噪和滤波。 原理 傅里叶变换将图像表示为频率成分的叠加,使得频率成分可以独立处理。通过对频率成分的分析和处理&#xff0…...

谷粒商城实战笔记-131~132-商城业务-商品上架-构造sku检索属性和库存查询

文章目录 一,131-商城业务-商品上架-构造sku检索属性1,开发目标2,详细设计2.1,根据spu_id获取所有的规格参数2.2,根据上一步中查询结果进一步确认是否可搜索2.3,将可搜索的属性封装到Java模型中 二&#xf…...

【Python学习-UI界面】PyQt5 QLabel小部件

序号组件说明详细介绍链接1QLabel用作占位符,用于显示不可编辑的文本、图像,或者动画GIF的电影。它也可以用作其他小部件的助记符键。2QLineEdit是最常用的输入字段。它提供了一个框,可以输入一行文本。要输入多行文本,需要使用QT…...

vue项目打包问题

缓存导致打包后js文件404 修改vue.config.js打包输出文件名为动态,例如取当前时间戳。 在index.html文件添加meta标签设置不缓存。 更新完包,假如用户此刻正访问某一个页面时,访问的包还是原来的情况导致出现bug 解决VUE项目更新后需要客户手…...

C++标准模板库(STL)|容器|vector| queue|

对STL进行总结,STL是standard template library的简写,是C中的一个标准模板库,用于实现常用的数据结构和算法,它是C程序员经常使用的一个工具箱。STL 的主要目的是提高开发效率和代码质量,使得程序员可以更加便捷地完成…...

【Android】安卓四大组件之Service用法

文章目录 使用Handler更新UIService基本特点启动方式非绑定式服务使用步骤 绑定式服务步骤 生命周期非绑定式启动阶段结束阶段 绑定式启动阶段结束阶段 前台Service使用步骤结束结束Service本身降级为普通Service降级为普通Service 使用Handler更新UI 主线程创建Handler对象&a…...

Python爬虫入门实战(详细步骤)

1. 技术选型 爬虫这个功能,我个人理解是什么语言都能写的,只要能正常发送 HTTP 请求,将响应回来的静态页面模版 HTML 上把我们所需要的数据提取出来就可以了,原理很简单,这个东西当然可以手动去统计收集,但…...

5、Linux : 网络相关

OSI七层网络模型 TCP/IP四层 概念模型 对应网络协议 应用层(Application) HTTP、TFTP, FTP, NFS, WAIS、 表示层(Presentation) 应用层 Telnet, Rlogin, SNMP, Gopher 会话层(Session) SMTP…...

Linux中针对文件权限的解析

1.文件权限详细解析: -rw-r--r--. 1 root root 114 4月 10 16:32 100.txt 1)-rw-r--r--. 总共11位 第一个“-”和最后一个“.”不用去管,剩下 rw- r-- r-- 属主 属组 其他人 u g o 第一个是“-”表示普通文件 第一个是“d”表示文件目录 …...

【0304】psql 执行“VACUUM FULL”命令的背后实现过程

1. 概述 在前面讲解Postgres内核中解析器相关(【0297】Postgres内核之 INSERT INTO 原始解析树 转 Query 树 (1))内容时,曾提到过,Postgres内核大致将用户下发的SQL语句分为三大类,这里的VACUUM FULL属于CMD_UTILITY; 因此直接调用utility.c(实用程序)中的对应函数。…...

Java常见面试题-11-MongoDb

文章目录 MongoDB 是什么?MongoDB 和关系型数据库 mysql 区别MongoDB 有 3 个数据库分别是什么?MongoDB 中的数据类型MongoDB 适用业务场景 MongoDB 是什么? mongodb 是属于文档型的非关系型数据库,是开源、高性能、高可用、可扩…...

PBLOCK

PBLOCK是附加到Vivado中分配给Pblocks的单元格的只读属性 设计套房。 Pblock是一组单元格,以及一个或多个指定 Pblock所包含的设备资源。在平面规划过程中使用了Pblocks 将其放置到组相关逻辑中,并将其分配到目标设备的某个区域。请参阅 Vivado设计套件用…...

电子纸打造智能、自动化、绿色的工作流程

电子纸打造智能、自动化、绿色的工作流程 RFID技术最早在1940年代问世,1980年开始商业化使用。直到现在RFID(无线射频识别)技术已经深入到我们生活的方方面面。特别是在工业生产、物流运输等领域,RFID技术发挥着越来越重要的作用…...

Redis 的6种回收策略(淘汰策略)详解

Redis 的6种回收策略(淘汰策略)详解 1、Redis的六种淘汰策略1. volatile-lru2. volatile-ttl3. volatile-random4. allkeys-lru5. allkeys-random6. no-eviction 2、使用策略规则 💖The Begin💖点点关注,收藏不迷路&am…...

SQL注入sqli-labs-master关卡一

本文环境搭建使用的是小皮,靶机压缩包:通过百度网盘分享的文件:sqli-labs-php7-master.zip 链接:https://pan.baidu.com/s/1xBfsi2lyrA1QgUWycRsHeQ?pwdqwer 提取码:qwer 下载解压至phpstudy的WWW目录下即可。 第一…...

LeetCode面试题Day6|LeetCode238 除自身以外数组的乘积、LeetCode134 加油站

题目1: 指路: . - 力扣(LeetCode)238 除自身以外数组的乘积 思路与分析: 除去自身元素求其他元素的乘积,或许第一反应会是数组元素积乘再除以遍历到的元素,定义一个结果数组再对应放结果值&…...

猫头虎分享:Python库 FastAPI 的简介、安装、用法详解入门教程

🐯 猫头虎分享:Python库 FastAPI 的简介、安装、用法详解入门教程 🚀 📄 摘要 作为一名专注于Python和人工智能开发的技术博主,猫头虎经常在开发过程中遇到各种挑战。最近,有粉丝问到如何高效地构建API&a…...

python连接MySQL数据库使用pymysql

开头 经过这么一段时间的学生信息管理系统的摸爬滚打,不断的学习更新的知识,不断修改自己的认知,针对pymysql以及MySQL数据库的知识做个总结,以纪念我这段时间的学习。 目录 开头 pymysql的使用流程 1.导入pymysql的工具包 方…...

AI时代下的编程趋势:程序员如何提升核心竞争力

随着人工智能和机器学习技术的飞速发展,大型语言模型和AI生成代码(AIGC)工具如ChatGPT、Midjourney、Claude等层出不穷,AI辅助编程逐渐成为现实。在这一变革的浪潮中,程序员群体面临着前所未有的挑战和机遇。一些人担忧…...

C#:基本语法

写在前面 本人在实习过程需要用C#进行开发,但本人之前的技术栈是C方向,所以在菜鸟教程上速通了一下C#的基本语法,总的来说和C还是非常相似的。 1 关键字 using关键字:使用命名空间class:使用类 2 注释 /* 这个程序…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...