当前位置: 首页 > news >正文

图像变换算法

1.1 傅里叶变换 (Fourier Transform)

介绍

傅里叶变换是一种数学变换,用于将图像从空间域转换到频率域。它广泛应用于图像去噪和滤波。

原理

傅里叶变换将图像表示为频率成分的叠加,使得频率成分可以独立处理。通过对频率成分的分析和处理,可以实现对图像的去噪、增强和其他操作。

公式

连续傅里叶变换:

离散傅里叶变换(DFT):

案例1

使用Python和OpenCV进行傅里叶变换。

代码解析
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行傅里叶变换
dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 计算频谱图
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))# 显示原始图像和频谱图
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()

案例2:低通滤波器应用

在医学图像处理中,经常使用傅里叶变换进行低通滤波,以去除图像中的噪声。

代码解析
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行傅里叶变换
dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 创建一个低通滤波器
rows, cols = image.shape
crow, ccol = rows // 2 , cols // 2
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1# 应用滤波器并逆变换
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])# 显示结果
plt.subplot(131), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(132), plt.imshow(mask[:,:,0], cmap='gray')
plt.title('Mask'), plt.xticks([]), plt.yticks([])plt.subplot(133), plt.imshow(img_back, cmap='gray')
plt.title('After LPF'), plt.xticks([]), plt.yticks([])plt.show()

生活场景案例

傅里叶变换在图像压缩、去噪和医学成像中应用广泛。

总结

傅里叶变换将图像从空间域转换到频率域,便于频率分析和处理。

1.2 离散余弦变换 (Discrete Cosine Transform, DCT)

介绍

离散余弦变换(DCT)用于将图像分解为不同频率的余弦分量,广泛应用于图像压缩,如JPEG。

原理

DCT将图像表示为余弦函数的线性组合,有效地集中能量,使得大部分能量集中在较少的DCT系数中,便于压缩。

公式

一维离散余弦变换:

案例:JPEG图像压缩

在JPEG图像压缩中,DCT用于将图像块分解为频率成分,然后仅保留低频分量进行压缩。

代码解析
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行离散余弦变换
dct = cv2.dct(np.float32(image))# 显示原始图像和DCT结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(dct, cmap='gray')
plt.title('DCT Image'), plt.xticks([]), plt.yticks([])plt.show()

生活场景案例

DCT在JPEG图像压缩中广泛应用,通过压缩高频成分减少数据量。

总结

DCT将图像分解为余弦分量,实现能量集中和数据压缩。

1.3 小波变换 (Wavelet Transform)

介绍

小波变换用于多分辨率分析,可以在不同尺度上分析图像特征,广泛应用于图像压缩和去噪。

原理

小波变换通过小波函数将图像分解为不同尺度和位置的子带,可以有效地表示图像中的局部特征。

公式

连续小波变换:

案例

使用Python和PyWavelets进行小波变换。

代码解析
import pywt
import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行小波变换
coeffs2 = pywt.dwt2(image, 'bior1.3')
LL, (LH, HL, HH) = coeffs2# 显示结果
plt.figure(figsize=(12, 3))
titles = ['Approximation', ' Horizontal detail', 'Vertical detail', 'Diagonal detail']
for i, a in enumerate([LL, LH, HL, HH]):plt.subplot(1, 4, i + 1)plt.imshow(a, cmap='gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()

案例2:图像去噪

小波变换可以用于图像去噪,通过分解图像,滤除高频噪声并重构图像。

代码解析
import pywt
import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('image.jpg', 0)# 进行小波变换
coeffs2 = pywt.dwt2(image, 'bior1.3')
LL, (LH, HL, HH) = coeffs2# 进行去噪处理
coeffs2_filtered = LL, (LH * 0.5, HL * 0.5, HH * 0.5)# 重构图像
image_reconstructed = pywt.idwt2(coeffs2_filtered, 'bior1.3')# 显示结果
plt.subplot(131), plt.imshow(image, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])plt.subplot(132), plt.imshow(LL, cmap='gray')
plt.title('Approximation'), plt.xticks([]), plt.yticks([])plt.subplot(133), plt.imshow(image_reconstructed, cmap='gray')
plt.title('Denoised Image'), plt.xticks([]), plt.yticks([])plt.show()

生活场景案例

小波变换在医学图像处理、数据压缩和去噪等领域有重要应用。

总结

小波变换通过多分辨率分析,有效处理图像中的细节和特征,实现压缩和去噪。

相关文章:

图像变换算法

1.1 傅里叶变换 (Fourier Transform) 介绍 傅里叶变换是一种数学变换,用于将图像从空间域转换到频率域。它广泛应用于图像去噪和滤波。 原理 傅里叶变换将图像表示为频率成分的叠加,使得频率成分可以独立处理。通过对频率成分的分析和处理&#xff0…...

谷粒商城实战笔记-131~132-商城业务-商品上架-构造sku检索属性和库存查询

文章目录 一,131-商城业务-商品上架-构造sku检索属性1,开发目标2,详细设计2.1,根据spu_id获取所有的规格参数2.2,根据上一步中查询结果进一步确认是否可搜索2.3,将可搜索的属性封装到Java模型中 二&#xf…...

【Python学习-UI界面】PyQt5 QLabel小部件

序号组件说明详细介绍链接1QLabel用作占位符,用于显示不可编辑的文本、图像,或者动画GIF的电影。它也可以用作其他小部件的助记符键。2QLineEdit是最常用的输入字段。它提供了一个框,可以输入一行文本。要输入多行文本,需要使用QT…...

vue项目打包问题

缓存导致打包后js文件404 修改vue.config.js打包输出文件名为动态,例如取当前时间戳。 在index.html文件添加meta标签设置不缓存。 更新完包,假如用户此刻正访问某一个页面时,访问的包还是原来的情况导致出现bug 解决VUE项目更新后需要客户手…...

C++标准模板库(STL)|容器|vector| queue|

对STL进行总结,STL是standard template library的简写,是C中的一个标准模板库,用于实现常用的数据结构和算法,它是C程序员经常使用的一个工具箱。STL 的主要目的是提高开发效率和代码质量,使得程序员可以更加便捷地完成…...

【Android】安卓四大组件之Service用法

文章目录 使用Handler更新UIService基本特点启动方式非绑定式服务使用步骤 绑定式服务步骤 生命周期非绑定式启动阶段结束阶段 绑定式启动阶段结束阶段 前台Service使用步骤结束结束Service本身降级为普通Service降级为普通Service 使用Handler更新UI 主线程创建Handler对象&a…...

Python爬虫入门实战(详细步骤)

1. 技术选型 爬虫这个功能,我个人理解是什么语言都能写的,只要能正常发送 HTTP 请求,将响应回来的静态页面模版 HTML 上把我们所需要的数据提取出来就可以了,原理很简单,这个东西当然可以手动去统计收集,但…...

5、Linux : 网络相关

OSI七层网络模型 TCP/IP四层 概念模型 对应网络协议 应用层(Application) HTTP、TFTP, FTP, NFS, WAIS、 表示层(Presentation) 应用层 Telnet, Rlogin, SNMP, Gopher 会话层(Session) SMTP…...

Linux中针对文件权限的解析

1.文件权限详细解析: -rw-r--r--. 1 root root 114 4月 10 16:32 100.txt 1)-rw-r--r--. 总共11位 第一个“-”和最后一个“.”不用去管,剩下 rw- r-- r-- 属主 属组 其他人 u g o 第一个是“-”表示普通文件 第一个是“d”表示文件目录 …...

【0304】psql 执行“VACUUM FULL”命令的背后实现过程

1. 概述 在前面讲解Postgres内核中解析器相关(【0297】Postgres内核之 INSERT INTO 原始解析树 转 Query 树 (1))内容时,曾提到过,Postgres内核大致将用户下发的SQL语句分为三大类,这里的VACUUM FULL属于CMD_UTILITY; 因此直接调用utility.c(实用程序)中的对应函数。…...

Java常见面试题-11-MongoDb

文章目录 MongoDB 是什么?MongoDB 和关系型数据库 mysql 区别MongoDB 有 3 个数据库分别是什么?MongoDB 中的数据类型MongoDB 适用业务场景 MongoDB 是什么? mongodb 是属于文档型的非关系型数据库,是开源、高性能、高可用、可扩…...

PBLOCK

PBLOCK是附加到Vivado中分配给Pblocks的单元格的只读属性 设计套房。 Pblock是一组单元格,以及一个或多个指定 Pblock所包含的设备资源。在平面规划过程中使用了Pblocks 将其放置到组相关逻辑中,并将其分配到目标设备的某个区域。请参阅 Vivado设计套件用…...

电子纸打造智能、自动化、绿色的工作流程

电子纸打造智能、自动化、绿色的工作流程 RFID技术最早在1940年代问世,1980年开始商业化使用。直到现在RFID(无线射频识别)技术已经深入到我们生活的方方面面。特别是在工业生产、物流运输等领域,RFID技术发挥着越来越重要的作用…...

Redis 的6种回收策略(淘汰策略)详解

Redis 的6种回收策略(淘汰策略)详解 1、Redis的六种淘汰策略1. volatile-lru2. volatile-ttl3. volatile-random4. allkeys-lru5. allkeys-random6. no-eviction 2、使用策略规则 💖The Begin💖点点关注,收藏不迷路&am…...

SQL注入sqli-labs-master关卡一

本文环境搭建使用的是小皮,靶机压缩包:通过百度网盘分享的文件:sqli-labs-php7-master.zip 链接:https://pan.baidu.com/s/1xBfsi2lyrA1QgUWycRsHeQ?pwdqwer 提取码:qwer 下载解压至phpstudy的WWW目录下即可。 第一…...

LeetCode面试题Day6|LeetCode238 除自身以外数组的乘积、LeetCode134 加油站

题目1: 指路: . - 力扣(LeetCode)238 除自身以外数组的乘积 思路与分析: 除去自身元素求其他元素的乘积,或许第一反应会是数组元素积乘再除以遍历到的元素,定义一个结果数组再对应放结果值&…...

猫头虎分享:Python库 FastAPI 的简介、安装、用法详解入门教程

🐯 猫头虎分享:Python库 FastAPI 的简介、安装、用法详解入门教程 🚀 📄 摘要 作为一名专注于Python和人工智能开发的技术博主,猫头虎经常在开发过程中遇到各种挑战。最近,有粉丝问到如何高效地构建API&a…...

python连接MySQL数据库使用pymysql

开头 经过这么一段时间的学生信息管理系统的摸爬滚打,不断的学习更新的知识,不断修改自己的认知,针对pymysql以及MySQL数据库的知识做个总结,以纪念我这段时间的学习。 目录 开头 pymysql的使用流程 1.导入pymysql的工具包 方…...

AI时代下的编程趋势:程序员如何提升核心竞争力

随着人工智能和机器学习技术的飞速发展,大型语言模型和AI生成代码(AIGC)工具如ChatGPT、Midjourney、Claude等层出不穷,AI辅助编程逐渐成为现实。在这一变革的浪潮中,程序员群体面临着前所未有的挑战和机遇。一些人担忧…...

C#:基本语法

写在前面 本人在实习过程需要用C#进行开发,但本人之前的技术栈是C方向,所以在菜鸟教程上速通了一下C#的基本语法,总的来说和C还是非常相似的。 1 关键字 using关键字:使用命名空间class:使用类 2 注释 /* 这个程序…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...

【汇编逆向系列】六、函数调用包含多个参数之多个整型-参数压栈顺序,rcx,rdx,r8,r9寄存器

从本章节开始,进入到函数有多个参数的情况,前面几个章节中介绍了整型和浮点型使用了不同的寄存器在进行函数传参,ECX是整型的第一个参数的寄存器,那么多个参数的情况下函数如何传参,下面展开介绍参数为整型时候的几种情…...

深入理解 C++ 左值右值、std::move 与函数重载中的参数传递

在 C 编程中,左值和右值的概念以及std::move的使用,常常让开发者感到困惑。特别是在函数重载场景下,如何合理利用这些特性来优化代码性能、确保语义正确,更是一个值得深入探讨的话题。 在开始之前,先提出几个问题&…...

从0开始学习R语言--Day17--Cox回归

Cox回归 在用医疗数据作分析时,最常见的是去预测某类病的患者的死亡率或预测他们的结局。但是我们得到的病人数据,往往会有很多的协变量,即使我们通过计算来减少指标对结果的影响,我们的数据中依然会有很多的协变量,且…...