白骑士的PyCharm教学实战项目篇 4.4 大数据处理与分析
系列目录
上一篇:白骑士的PyCharm教学实战项目篇 4.3 自动化测试与持续集成
随着数据量的爆炸性增长,大数据处理与分析成为现代数据科学的重要课题。PyCharm提供了强大的功能,可以帮助开发者高效地进行大数据环境的配置与连接,并实现数据处理与分析的各种实践。本文将详细介绍如何在PyCharm中配置大数据环境,并通过实际案例展示如何进行大数据处理与分析。
大数据环境配置与连接
大数据环境通常包括分布式计算框架和大数据存储系统,如Apache Hadoop、Apache Spark、HDFS等。PyCharm支持通过插件和外部工具连接到这些大数据环境。
配置Apache Spark环境
安装Apache Spark
- 下载并安装Apache Spark,可以从Spark官网下载最新版本。
- 解压下载的文件,并配置环境变量,将Spark的'bin'目录添加到系统的'PATH'中。
配置PyCharm项目
- 打开PyCharm,选择 “File” -> “New Project”,创建一个新的Python项目。
- 在创建项目时,选择使用虚拟环境,以便隔离项目依赖。
安装PySpark库
- 在PyCharm的终端或通过 “File” -> “Settings” -> “Project: <project_name>” -> “Python Interpreter” 添加PySpark库:
pip install pyspark
配置Hadoop环境(可选)
- 如果需要使用HDFS进行数据存储,需要安装并配置Hadoop。可以从Hadoop官网下载并安装。
- 配置Hadoop的环境变量,将Hadoop的'bin'目录添加到系统的 'PATH' 中,并配置HDFS的相关参数。
连接到大数据环境
创建SparkSession
- 在PyCharm中编写Python脚本,创建SparkSession以连接到Spark集群:
from pyspark.sql import SparkSessionspark = SparkSession.builder \.appName("PySpark Big Data Analysis") \.master("local[*]") \.getOrCreate()
连接到HDFS(可选)
- 如果使用HDFS进行数据存储,可以在SparkSession中配置HDFS连接参数:
hdfs_url = "hdfs://localhost:9000"
spark._jsc.hadoopConfiguration().set("fs.defaultFS", hdfs_url)
数据处理与分析实践
在配置好大数据环境并连接成功后,可以开始进行大数据的处理与分析。本文将通过实际案例展示如何在PyCharm中使用Spark进行数据处理和分析。
数据导入与预处理
导入数据
- 使用Spark读取数据,可以读取多种格式的数据,如CSV、JSON、Parquet等。例如,读取CSV文件:
df = spark.read.csv("data.csv", header=True, inferSchema=True)
数据预处理
- 对导入的数据进行预处理,包括清洗、转换、过滤等操作。例如,删除缺失值:
df_cleaned = df.na.drop()
数据分析与计算
基本统计分析
- 使用Spark的DataFrame API进行基本的统计分析,例如,计算数据的描述统计信息:
df_cleaned.describe().show()
数据分组与聚合
- 使用Spark的分组与聚合操作,进行复杂的数据分析和计算。例如,按某列分组并计算平均值:
df_grouped = df_cleaned.groupBy("category").avg("value")
df_grouped.show()
数据透视与分析
- 使用Spark进行数据透视和复杂的分析操作。例如,计算某列的频率分布:
df_pivot = df_cleaned.groupBy("category").count()
df_pivot.show()
数据可视化
安装可视化库
- 使用PyCharm安装常用的数据可视化库,如Matplotlib、Seaborn等:
pip install matplotlib seaborn
绘制图表
- 将Spark DataFrame转换为Pandas DataFrame,以便使用可视化库进行数据绘图:
import matplotlib.pyplot as plt
import seaborn as snspandas_df = df_grouped.toPandas()sns.barplot(x="category", y="avg(value)", data=pandas_df)plt.show()
总结
本文介绍了如何在PyCharm中配置和连接大数据环境,包括安装和配置Apache Spark,连接HDFS,以及使用PySpark进行大数据的处理与分析。通过实际案例展示了如何进行数据导入、预处理、分析和可视化操作。希望本文能够帮助你掌握在PyCharm中进行大数据处理与分析的基本方法和实践,提高你的数据处理效率和分析能力。无论是在学术研究还是工业应用中,掌握大数据处理与分析的技能,都是一项非常有价值的能力。
下一篇:暂无
相关文章:
白骑士的PyCharm教学实战项目篇 4.4 大数据处理与分析
系列目录 上一篇:白骑士的PyCharm教学实战项目篇 4.3 自动化测试与持续集成 随着数据量的爆炸性增长,大数据处理与分析成为现代数据科学的重要课题。PyCharm提供了强大的功能,可以帮助开发者高效地进行大数据环境的配置与连接…...
无人机之民用无人机用途分类篇
一、航拍无人机 用于航拍摄影和电影制作,提供空中视角的拍摄服务。可用于电影制作、广告拍摄、房地产销售等。 二、物流无人机 用于快递和货物运输,提高物流效率,可以到达传统配送方式难以覆盖的地区,在突发事件如自然灾害、疫…...
Android10 修改设备名称
A10和A12的设备名称修改是不同的,A10设备名称修改分好几个位置 修改wifi默认名称 在framework/base模块下 diff --git a/core/res/res/values/strings.xml b/core/res/res/values/strings.xml index 9041a7c3a14..7a1e63688c4 100644 --- a/core/res/res/values/…...
go testing 包
Go语言的testing包提供了一套丰富的测试工具,用于编写和运行测试用例。以下是testing包中一些常用的函数和类型: func TestMain(m *testing.M): 这是一个特殊的函数,用于执行测试的主函数。如果定义了TestMain,那么在运行go test时…...
基于phpstudy的靶场搭建和github加速
微软商店下载 watt toolkit,然后在侧边栏选择网络加速,勾选 github,就可以快速访问 github 1、下载搭建 sqlilabs github 找到 sqlilabs 靶场,点击 code,下载 zip解压之后,整体移动到 phpstudy_pro 文件夹…...
【数据结构】Map与Set
前言 前两篇文章我们研究了二叉搜索树与哈希表的结构与特点,他们二者是Map与Set这两个接口实现的底层结构,他们利用了搜索树与哈希表查找效率高这一特点,是一种专门用来进行搜索操作的容器或数据结构。本篇文章就让我们一起来梳理这两个接口的…...
Flamingo: a Visual Language Model for Few-Shot Learning
发表时间:NeurIPS 2022 论文链接:https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf 作者单位:DeepMind Motivation:仅使用少量注释示例可以快速适应新任务…...
flume性能调优
作者:南墨 1.Source性能调优 1.1 Spooldir Source 使用Spooldir Source采集日志数据时,若每行日志数据<100bp,可以通过将多行合并传输来提升传输性能 建议合并时根据数据长度来确定多少行合并为一个单位进行传输,合并后的长…...
mysql 字符串转数组
在 MySQL 中,可以使用内置的字符串函数 SUBSTRING_INDEX() 和 REPLACE() 来实现将字符串转换为数组。 首先,使用 REPLACE() 函数将字符串中的分隔符替换为空格,然后使用 SUBSTRING_INDEX() 函数将字符串按空格分割成多个子字符串。最后&…...
UE基础 —— 术语
目录 Project Blueprint Class Object Actor Casting Component Pawn Character Player Controller AI Controller Player State Game Mode Game State Brush Volume Level World Project 项目(Project)包含游戏的所有内容,…...
kubernets学习笔记——使用kubeadm构建kubernets集群及排错
使用kubeadm构建kubernets集群 一、准备工作1、repo源配置:阿里巴巴开源镜像源2、更新软件包并安装必要的系统工具3、同步时间4、禁用selinux5、禁用交换分区swap6、关闭防火墙 二、安装docker-ce、docker、cri-docker1、安装docker-ce2、开启内核转发,转…...
简述MYSQL聚簇索引、二级索引、索引下推
一丶聚簇索引 InnoDB的索引分为两种: 聚簇索引:一般创建表时的主键就会被mysql作为聚簇索引,如果没有主键则选择非空唯一索引作为聚簇索引,都没有则隐式创建一个索引作为聚簇索引;辅助索引:也就是非聚簇索…...
电脑开机后出现bootmgr is missing原因及解决方法
最近有网友问我为什么我电脑开机后出现bootmgr is missing,这个提示意思是:意思是启动管理器丢失,说明bootmgr损坏或者丢失,系统无法读取到这个必要的启动信息导致无法启动。原因有很多,比如我们采用的是uefi引导,而第…...
2024 年 7 月公链行业研报:市场波动中 Solana 表现抢眼,Layer 2 竞争白热化
作者:Stella L (stellafootprint.network) 数据来源:Footprint Analytics 公链 Research 页面 7 月份,加密货币市场表现活跃,波动幅度较大,这一现象映射了全球金融市场的整体趋势。现货以太坊 ETP 在美国的上市&…...
Python查缺補漏
一、 json.load(s)与json.dump(s)区别 json.loads()将str类型的数据转换为dict类型 json.dumps()将dict类型的数据转成str json.load()从json文件中读取数据 json.dump()将数据以json的数据类型写入文件中 二、json内部要使用双引号 data """{ "fruit&qu…...
c++的类和对象(中):默认成员函数与运算符重载(重难点!!)
前言 Hello, 小伙伴们,我们今天继续c的学习,我们上期有介绍到c的部分特性,以及一些区别于c语言的地方,今天我们将继续深入了解c的类和对象,探索c的奥秘。 好,废话不多说,开始我们今天的学习。…...
Android .kl按键布局文件
1.介绍 一个硬件按键的处理流程大致为:当用户按下或释放一个键时,键盘硬件会生成一个扫描码scan code,然后操作系统读取这个scan code,并将scan code扫描码映射到虚拟键码key code,最后操作系统根据映射的keycode生成…...
Java每日一练_模拟面试题6(JVM的GC过程)
一、JVM虚拟机组成 JVM五大内存区域:程序计数器,Java虚拟机栈,本地方法栈,java堆,方法区。 堆被划分为两个区域:年轻代(Young)、老年代(Tenured)。年轻代又被划分为三个区域:Eden、From Surviv…...
数据防泄密软件推荐|(6大数据防泄密软件推荐!)
很多朋友在后台私信,什么是数据防泄密软件,有哪些数据防泄密软件推荐。 今天小编将从定义出发,深入浅出地介绍这一技术的工作原理、应用场景以及实现方式。 一、什么是文档透明加密? 文档透明加密是一种在用户无感知的情况下对文…...
Codeforces 874 div3 A-G
A. Musical Puzzle 分析 每两个相邻的字母都要录制一段,开个set记录一下,然后输出set的大小 C代码: #include<iostream> #include<set> using namespace std; void solve(){int n;string s;cin>>n>>s;set<strin…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
