当前位置: 首页 > news >正文

python实战:数据分析基础知识

当涉及到数据分析和统计建模时,Python 提供了强大的工具和库,如 pandas、numpy、statsmodels 和 matplotlib。本文将以一个实际的案例为例,介绍如何利用这些工具进行回归分析,并通过可视化工具进行结果展示和解释。

1. 背景介绍

在本文中,我们将探索如何使用 Python 进行回归分析,具体来说,我们将使用的数据集包含了关于不良贷款(y)和一些可能影响不良贷款的因素(x)的信息。我们将通过简单线性回归模型来探索这些因素对不良贷款的影响程度。

2. 数据准备与加载

首先,我们需要加载数据并进行初步的检查,确保数据的完整性和正确性。

import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt# 设置中文显示和正常显示负号
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 读取数据集
example10_1 = pd.read_csv('exercise10_1.csv', encoding='gbk')# 打印数据集的前几行和列名,确保数据读取正确
print(example10_1.head())
print(example10_1.columns)

3. 数据预处理

在了解数据结构后,我们需要根据实际情况调整列名,并准备用于回归分析的自变量(X)和因变量(y)。

# 根据实际情况调整列名,这里假设实际列名为 '不良贷款','贷款余额','应收贷款','贷款项目个数','固定资产投资'
x = example10_1[['贷款余额', '应收贷款', '贷款项目个数', '固定资产投资']]  # 根据实际列名修改
y = example10_1['不良贷款']  # 根据实际列名修改# 添加常数项
X = sm.add_constant(x)# 拟合线性回归模型
model = sm.OLS(y, X).fit()# 打印回归结果摘要
print(model.summary())

4. 回归结果分析与可视化

完成模型拟合后,我们可以通过图形化方式来评估模型的适配程度和残差的分布情况。

# 创建一个包含两个子图的图像
fig, axes = plt.subplots(1, 2, figsize=(9, 4))# 绘制残差与拟合值的散点图
axes[0].scatter(model.fittedvalues, model.resid)
axes[0].set_xlabel('拟合值')
axes[0].set_ylabel('残差')
axes[0].set_title('(a) 残差值与拟合值图', fontsize=15)
axes[0].axhline(0, ls='--')# 绘制正态 Q-Q 图
sm.qqplot(model.resid, line='r', ax=axes[1])
axes[1].set_xlabel('期望正态值')
axes[1].set_ylabel('标准化的观测值')
axes[1].set_title('正态Q-Q图', fontsize=15)# 调整布局
plt.tight_layout()# 显示图像
plt.show()

5. 结论与建议

通过以上步骤,我们展示了如何使用 Python 中的 pandas 进行数据加载和预处理,利用 statsmodels 进行线性回归分析,以及利用 matplotlib 进行结果的可视化呈现。这些工具不仅帮助我们理解数据之间的关系,还能够通过图形化的方式有效地传达分析结果和结论。

在实际应用中,我们还可以进一步探索模型的假设检验、预测能力以及可能的模型改进方法,以提升模型的解释力和预测准确性。

通过这篇博客文章,读者可以学习到如何利用 Python 中的强大工具进行数据分析和统计建模,为实际问题的解决提供了有效的方法和工具支持。

相关文章:

python实战:数据分析基础知识

当涉及到数据分析和统计建模时,Python 提供了强大的工具和库,如 pandas、numpy、statsmodels 和 matplotlib。本文将以一个实际的案例为例,介绍如何利用这些工具进行回归分析,并通过可视化工具进行结果展示和解释。 1. 背景介绍 …...

Grafana深入讲解

Grafana 深入讲解 目录 概述Grafana 基本概念 2.1 Grafana 简介2.2 Grafana 功能特性2.3 Grafana 架构 Grafana 安装与配置 3.1 安装 Grafana3.2 配置 Grafana3.3 验证 Grafana 安装 Grafana 数据源 4.1 支持的数据源类型4.2 添加数据源4.3 配置 Prometheus 数据源 Grafana 仪…...

002 git

下载 使用git clone命令下载特定分支 打开终端或命令行界面。 使用cd命令切换到你想存放仓库副本的本地目录。 使用以下命令克隆仓库的develop分支到本地&#xff08;注意替换<仓库URL>为实际的仓库URL&#xff09;&#xff1a; git clone -b develop --single-branch…...

MySQL --- 用户管理

一、用户信息 MySQL中的用户信息&#xff0c;都存储在系统数据库mysql的表user中 user表的结构如下 这里主要介绍以下几个字段 host &#xff1a; 表示这个用户可以从哪个主机登陆&#xff0c;如果是 localhost &#xff0c;表示只能从本机登陆 user&#xff1a; 用户名 a…...

Linux 错误码

目录 一、概述二、含义三、错误处理函数1、IS_ERR2、strerr、perror 一、概述 在 Linux 系统中&#xff0c;错误码是用来表示操作系统运行过程中发生的错误的数字代码。错误码通常由负数表示&#xff0c;0 表示成功&#xff0c;正数表示警告或其他非致命错误。 为了开发者更好…...

《向量数据库指南》——开源社区与商业化的平衡

开源社区与商业化的平衡 Lynn:我觉得这个说的特别好,因为开发者工具其实有很多,但是事实上真正去做开源的这种社区的,尤其是做的比较大的,其实这样的企业还是比较少的。那么当初在起步的时候就这么坚定的去选择开源,然后这么短的时间能获得这么多产品反馈。其实让我想到那…...

记录一次echarts图表大数据量轮询刷新页面卡死问题的优化

项目场景: 在我们的项目架构中,集成的Echarts图表组件采用了折线图,业务需求即每300毫秒自动更新图表上的数据,并且每一次的数据点数量达到了约700个,折线图刷新的很快,每300毫秒就要刷新数据 问题描述 开发过程中发现在这种数据量请求频率下,大概2个小时左右就会导致…...

补录:day023-回溯法

40.组合II 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a;解集不能包含重复的组合。 思路:组合题目二&#xff0c;这个题…...

【物联网】(防水篇)电子产品如何做到IPX7级别的防水?

电子产品如何做到IPX7级别的防水&#xff1f; 要使电子产品达到 IPX7 级别的防水&#xff0c;通常需要以下几个方面的措施&#xff1a; 1. 密封设计&#xff1a; 在产品的外壳连接处、接口、按键等部位&#xff0c;采用高质量的密封材料&#xff0c;如橡胶垫圈、硅胶密封圈等…...

JDK版本切换 - Windows

JDK 下载 点我跳转 - JDK下载官网 可以切换网址后面的JDK版本来跳转到不同的JDK版本下载页面 JDK 安装 双击exe文件即可安装最好是使用默认路径安装, 几个版本的JDK加起来也就1G如果双击exe文件没反应的话, 可以用**7-zip**解压出相应的文件 下载安装**7-zip**** - 默认路…...

STM32-IIC协议详解

一、IIC简介 IC&#xff08;Inter-Integrated Circuit&#xff09;协议由飞利浦公司于1980年代开发&#xff0c;是一种用于集成电路间短距离通信的串行协议。它设计用于连接低速外围设备&#xff0c;特别适合于需要简单数据交换的场景。IC协议使用两根信号线&#xff1a;SCL&am…...

Spring事件处理

Spring事件处理 1、核心概念2、线程模型3、监听上下文事件4、自定义事件 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 1、核心概念 ApplicationContext&#xff1a;Spring的核心容器&#xff0c;负责管理Bean的生命周期&#xff0c;并支…...

软设之安全防范体系

安全防范体系的划分&#xff1a; 物理环境的安全性。包括通信线路&#xff0c;物理设备和机房的安全等。物理层的安全主要体现在通信线路的可靠性&#xff0c;软硬件设备的安全性&#xff0c;设备的备份&#xff0c;防灾害能力&#xff0c;防干扰能力&#xff0c;设备的运行环…...

【Python】PyWebIO 初体验:用 Python 写网页

目录 前言1 使用方法1.1 安装 Pywebio1.2 输出内容1.3 输入内容 2 示例程序2.1 BMI 计算器2.2 Markdown 编辑器2.3 聊天室2.4 五子棋 前言 前两天正在逛 Github&#xff0c;偶然看到一个很有意思的项目&#xff1a;PyWebIo。 这是一个 Python 第三方库&#xff0c;可以只用 P…...

OrangePi AIpro学习3 —— vscode开发昇腾DVPP程序

目录 一、VScode配置 1.1 下载和安装 1.2 安装和配置需要的插件 二、构建项目 2.1 项目架构 2.2 解决代码高亮显示 2.3 测试编译 2.4 总结出最简单的代码 2.5 vscode报错找不到头文件解决方法 三、代码简单讲解 3.1 初始化部分 3.2 拷贝数据到NPU显存中 3.3 准备裁…...

redis的数据结构与对象

简单动态字符串 文章目录 简单动态字符串SDS的定义SDS的结构图示结构SDS字段解析SDS的特点 SDS和字符串的区别常数复杂度获取字符串的长度杜绝缓冲区的溢出减少修改字符串时的内存分配次数二进制安全兼容部分c字符串函数总结 链表链表和链表节点的实现链表节点&#xff08;list…...

ARM 汇编语言基础

目录 汇编指令代码框架 汇编指令语法格式 数据处理指令 数据搬移指令 mov 示例 立即数的本质 立即数的特点 立即数的使用 算术运算指令 指令格式 add 普通的加法指令 adc 带进位的加法指令 跳转指令 Load/Store指令 状态寄存器指令 基础概念 C 语言与汇编指令的关…...

c语言小知识点小计

c语言小知识点小计 1、运算符的优先级 运算符的优先级是和指针解引用*的优先级相同的&#xff0c;但在代码运行中执行顺序是从后往前的。因此下面代码 int a[10] {1,2,3,4}; int* arr a; printf("%d",*arr);//访问的值是2 //注意&#xff1a;printf("%d&qu…...

《C#面向语言版本编程》C# 13 中的新增功能

将C#语言版本升级为预览版 C# 13 包括一些新增功能。 可以使用最新的 Visual Studio 2022 版本或 .NET 9 预览版 SDK 尝试这些功能。若想在.NET项目中尝试使用C#的最新预览版特性&#xff0c;可以按照以下步骤来升级你的项目语言版本&#xff1a; .打开项目文件&#xff1a; 找…...

0成本通过Hugo和GitHub Pages搭建博客

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 使用 Chocolatey 安装 Hugo Chocolatey 是一个 Windows 软件包管理器&#xff0c;使用 PowerShell 和 NuGet 作为基础。它可以自动化软件的安装、升级和卸载过…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

基于单片机的宠物屋智能系统设计与实现(论文+源码)

本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢&#xff0c;连接红外测温传感器&#xff0c;可实时精准捕捉宠物体温变化&#xff0c;以便及时发现健康异常&#xff1b;水位检测传感器时刻监测饮用水余量&#xff0c;防止宠物…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...

二叉树-144.二叉树的前序遍历-力扣(LeetCode)

一、题目解析 对于递归方法的前序遍历十分简单&#xff0c;但对于一位合格的程序猿而言&#xff0c;需要掌握将递归转化为非递归的能力&#xff0c;毕竟递归调用的时候会调用大量的栈帧&#xff0c;存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧&#xff0c;而非…...