【数学分析笔记】第1章第1节:集合(1)
作为一个计算机专业的人,想自学一下数学专业的专业课补一补AI基础,顺带写个笔记,听的课是陈纪修版本的数学分析:
1. 集合与映射
1.1 集合
1.1.1 基本概念
-
集合:由某种特定性质的具体的或抽象的对象汇集的总体。
-
集合的元素:集合中的“对象”又称为集合的元素。
-
集合往往是用大写字母表示,比如 S , T , A , B , X , Y \textbf{S},\textbf{T},\textbf{A},\textbf{B},\textbf{X},\textbf{Y} S,T,A,B,X,Y;
-
对元素来说往往是用小写字母表示,比如
s , t , a , b , x , y s,t,a,b,x,y s,t,a,b,x,y; -
x x x是集合 S S S的元素,记为 x ∈ S x\in \textbf{S} x∈S
-
y y y不是集合 S S S的元素,记为 y ∈ ˉ S y\bar \in \textbf{S} y∈ˉS或 y ∉ S y\notin \textbf{S} y∈/S
1.1.2 常见的集合
常见的集合表示如下:
| 类型 | 符号 | 说明 |
|---|---|---|
| 正整数集合 | N + \textbf{N}^{+} N+ | { 1 , 2 , 3 , . . . } \{1,2,3,...\} {1,2,3,...} |
| 自然数集合 | N \textbf{N} N | { 0 , 1 , 2 , . . . } \{0,1,2,...\} {0,1,2,...} |
| 整数集合 | Z \textbf{Z} Z | { . . . , − 1 , 0 , 1 , . . . } \{...,-1,0,1,...\} {...,−1,0,1,...} |
| 有理数集合 | Q \textbf{Q} Q | 有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合 |
| 实数集合 | R \textbf{R} R | 实数是有理数和无理数的总称 |
| 空集 | ∅ \emptyset ∅ | 没有任何元素的集合 |
1.2 集合的表示
1.2.1 枚举法
所谓枚举法就是将集合中的元素一个一个写出来。
【例】光的基色的集合
{ 红 , 绿 , 蓝 } \{红,绿,蓝\} {红,绿,蓝}
【例】 A \textbf{A} A是 a , b , c , d a,b,c,d a,b,c,d构成的集合
A = { a , b , c , d } \textbf{A}=\{a,b,c,d\} A={a,b,c,d}
【例】整数集合
Z = { ± 1 , ± 2 , . . . , ± n , . . . } \textbf{Z}=\{\pm 1,\pm 2,...,\pm n,...\} Z={±1,±2,...,±n,...}
【例】正整数集合
N + = { 1 , 2 , 3 , . . . , n , . . . } \textbf{N}^{+}=\{1,2,3,...,n,...\} N+={1,2,3,...,n,...}
1.2.2 描述法
一个集合是具有某种性质 p p p元素汇集的总体, S = { x ∣ x 满足性质 p } \textbf{S}=\{x|x满足性质p\} S={x∣x满足性质p},像这样一个描述集合的方法叫做描述法
【例】2的方根
{ x ∣ x 2 = 2 } \{x|x^{2}=2\} {x∣x2=2}
【例】有理数集合
Q = { x ∣ x = q p , p ∈ N + 且 q ∈ Z } \textbf{Q}=\{x|x=\frac{q}{p},p\in \textbf{N}^{+}且q\in \textbf{Z}\} Q={x∣x=pq,p∈N+且q∈Z}
【注】(1)集合的表示中没有次序的关系,比如, { a , b } = { b , a } \{a,b\}=\{b,a\} {a,b}={b,a};重复也是有意义的(重复的元素相当于一个元素), { a , b } = { b , a } = { a , a , b } \{a,b\}=\{b,a\}=\{a,a,b\} {a,b}={b,a}={a,a,b}
(2)空集的概念:没有元素的集合称为空集,比如, C = { x ∈ R 且 x 2 = − 1 } = ∅ \textbf{C}=\{x\in \textbf{R}且x^{2}=-1\}=\emptyset C={x∈R且x2=−1}=∅或 C = { x ∈ R 且 x 2 + 1 = 0 } = ∅ \textbf{C}=\{x\in \textbf{R}且x^{2}+1=0\}=\emptyset C={x∈R且x2+1=0}=∅
相关文章:
【数学分析笔记】第1章第1节:集合(1)
作为一个计算机专业的人,想自学一下数学专业的专业课补一补AI基础,顺带写个笔记,听的课是陈纪修版本的数学分析: 1. 集合与映射 1.1 集合 1.1.1 基本概念 集合:由某种特定性质的具体的或抽象的对象汇集的总体。 集…...
计算机毕业设计 校园失物招领网站 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试
🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…...
GIT指令大全详解
目录 GIT指令详解 拉取 提交 分支操作(假设分支为a) 版本回退 主分支拉取到分支 常用的Git指令 一、初始化配置 二、初始化仓库 三、检查当前文件状态 四、添加 五、查看提交历史 六、撤销更改 七、查询 八、分支 九、标签管理 十、其他常用指令 GIT指令详解 Git是一个开源的分…...
ECCV2024,清华百度提出ReSyncer:可实现音频同步嘴唇动作视频生成。
清华&百度等联合提出了ReSyncer,可以实现更高稳定性和质量的口型同步,而且还支持创建虚拟表演者所必需的各种有趣属性,包括快速个性化微调、视频驱动的口型同步、说话风格的转换,甚至换脸。 ReSyncer的工作原理可以简单理解为…...
论文笔记:YOLOv8-QSD 自动驾驶场景小目标检测算法
摘要 YOLOv8-QSD网络是一种新型的无锚点驾驶场景检测网络,建立在YOLOv8的基础上,在保证检测精度的同时保持效率。该网络的骨干网采用结构重参数化技术来转换基于多样化分支块 (DBB) 的模型。 为了准确检测小目标,它集…...
Vue.js状态管理:Vuex与Pinia的比较
在 Vue.js 生态系统中,状态管理是构建复杂应用时的重要组成部分。Vue.js 提供了两种流行的状态管理库:Vuex 和 Pinia。虽然两者都旨在简化状态管理,但它们在设计哲学、API、性能和易用性方面有所不同。本文将深入探讨 Vuex 和 Pinia 的异同&a…...
OJ题目【栈和队列】
目录 有效的括号 有效的括号【代码】 用队列实现栈 用队列实现栈【代码】 用栈实现队列 用栈实现队列【代码】 设计循环队列 有效的括号 https://leetcode.cn/problems/valid-parentheses/submissions/551394950/ 思路:把左括号放到栈里,取出来栈…...
[shell][git]git将当前分支的HEAD指针重置到最后一次提交的状态
在Git中,git reset --hard HEAD 命令用于将当前分支的HEAD指针重置到最后一次提交的状态,并且会丢弃当前工作目录中的所有更改。这个命令的意思是: git reset:重置命令,用于将HEAD指针移动到指定的状态。--hard&#…...
高翔【自动驾驶与机器人中的SLAM技术】学习笔记(六)卡尔曼滤波器二:图解卡尔曼滤波器;卡尔曼滤波器公式理解;面试答法;
上一篇卡尔曼滤波器一中,从整体上认识了,卡尔曼滤波器整体是在做一件什么事。 知道了,协方差就可以理解为偏差,或者误差。 这一篇主要讲卡尔曼滤波器中的公式,理解公式,就能知道如何实现卡尔曼滤波器。 上一篇:卡尔曼滤波器在做一件什么事,这一篇,卡尔曼滤波器怎么…...
高性能日志系统 日志输出模块逻辑
概述 该模块主要实现了一个日志系统的输出模块,通过多态、工厂模式等设计模式,构建灵活的日志输出架构。 功能:格式化完成的标准日志消息,输出到指定为止拓展:支持同时将日志落地到不同的位置,也就是输出日…...
haproxy基础
目录 1 HAProxy介绍 1.1 版本对比 1.2 HAProxy功能 2 参数介绍与实践 2.1 global参数说明 2.2 真实代码格式实例 2.3 常用全局参数 2.3.1 nbproc -- 开启几个进程 2.3.2 cpu-map(CUP绑定) 2.3.3 nbthread 2 --开启2个线程 3 Proxies配置 3.1 Proxies配置-defaults 3.2 Proxi…...
C++ 面试题常用总结 详解(满足c++ 岗位必备,不定时更新)
📚 本文主要总结了一些常见的C面试题,主要涉及到语法基础、STL标准库、内存相关、类相关和其他辅助技能,掌握这些内容,基本上就满足C的岗位技能(红色标记为重点内容),欢迎大家前来学习指正&…...
LVS实验——部署DR模式集群
目录 一、实验环境 二、配置 1、LVS 2、router 3、client 4、RS 三、配置策略 四、测试 1.Director服务器采用双IP桥接网络,一个是VPP,一个DIP 2.Web服务器采用和DIP相同的网段和Director连接 3.每个Web服务器配置VIP 4.每个web服务器可以出外网…...
pythonUI自动化008::allure测试报告(安装及应用)
allure报告预览 1 下载jdk,配置jdk Path变量: https://www.cnblogs.com/FBGG/p/15103119.html(这里不作阐述,请看该偏文章配置即可) 2 下载allure驱动,配置allure Path变量: 下载allure驱动&a…...
常用的 git 和 linux 命令有哪些?
对于 Git 命令: 1. git init:初始化一个新的 Git 仓库。 2. git clone:克隆一个远程仓库到本地。 3. git add:将文件添加到暂存区。 4. git commit:提交暂存区的更改。 5. git status:查看工作区和暂存…...
MYSQL 删除一个字段前,判断字段是否存在
开发过程中经常需要提交可以重复执行的sql,当设计到需要增加字段时,可以参考如下办法: 1.如果是mysql 版本高于5.7.5 ALTER TABLE table_name DROP COLUMN IF EXISTS column_name; 2.通用方法 写一个存储过程,然后用存储过程取…...
vulnstack-5
环境搭建 靶场虚拟机共用两个,一个外网一个内网,用来练习红队相关内容和方向,主要包括常规信息收集、Web攻防、代码审计、漏洞利用、内网渗透以及域渗透等相关内容学习。 虚拟机密码 win7 sun\heart 123.com sun\Administrator dc123.com # …...
回归预测|基于灰狼优化GWO-Transformer-BiLSTM组合模型的数据回归预测Matlab程序 多特征输入单输出
回归预测|基于灰狼优化GWO-Transformer-LSTM组合模型的数据回归预测Matlab程序 多特征输入单输出 文章目录 前言回归预测|基于灰狼优化GWO-Transformer-BiLSTM组合模型的数据回归预测Matlab程序 多特征输入单输出GWO-Transformer-BiLSTM 一、GWO-Transformer-BiLSTM模型二、实验…...
STM32的USB接口介绍
STM32 USB接口是STM32微控制器系列中集成的一种通信接口,它允许STM32微控制器与外部设备或计算机进行高速的数据传输和通信。以下是STM32 USB接口的简要介绍: 1. 接口类型 STM32的USB接口通常支持USB 2.0标准,部分高端型号可能还支持USB 3.…...
【中等】 猿人学web第一届 第2题 js混淆 动态cookie 1
目录 调试干扰Hook Function 加密参数定位hook Cookie AST 解混淆字符串解密还原解密函数AST 配合解密函数还原字符串 ASCII 编码字符串还原字符串相加花指令(对象)剔除无用代码虚假 if剔除无引用代码剔除无引用的对象数值还原 switch 还原完整的 AST 代码代码注意 还原加密 请…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
