【扒网络架构】backbone、ccff
backbone






CCFF


还不知道网络连接方式,只是知道了每一层




backbone
- backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])
- backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])
- backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.0.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.0.downsample.0.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.1.conv1.weight torch.Size([64, 256, 1, 1])
- backbone.backbone.layer1.1.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.1.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.2.conv1.weight torch.Size([64, 256, 1, 1])
- backbone.backbone.layer1.2.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.2.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer2.0.conv1.weight torch.Size([128, 256, 1, 1])
- backbone.backbone.layer2.0.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.0.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.0.downsample.0.weight torch.Size([512, 256, 1, 1])
- backbone.backbone.layer2.1.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.1.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.1.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.2.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.2.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.2.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.3.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.3.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.3.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer3.0.conv1.weight torch.Size([256, 512, 1, 1])
- backbone.backbone.layer3.0.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.0.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.0.downsample.0.weight torch.Size([1024, 512, 1, 1])
- backbone.backbone.layer3.1.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.1.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.1.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.2.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.2.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.2.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.3.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.3.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.3.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.4.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.4.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.4.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.5.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.5.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.5.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer4.0.conv1.weight torch.Size([512, 1024, 1, 1])
- backbone.backbone.layer4.0.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.0.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.layer4.0.downsample.0.weight torch.Size([2048, 1024, 1, 1])
- backbone.backbone.layer4.1.conv1.weight torch.Size([512, 2048, 1, 1])
- backbone.backbone.layer4.1.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.1.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.layer4.2.conv1.weight torch.Size([512, 2048, 1, 1])
- backbone.backbone.layer4.2.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.2.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.fc.weight torch.Size([1000, 2048])
- backbone.backbone.fc.bias torch.Size([1000])
ccf
- ccff.conv1.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.conv1.norm.weight torch.Size([3584])
- ccff.conv1.norm.bias torch.Size([3584])
- ccff.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.conv2.norm.weight torch.Size([3584])
- ccff.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.0.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.0.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.0.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.0.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.0.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.0.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.1.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.1.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.1.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.1.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.1.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.1.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.2.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.2.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.2.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.2.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.2.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.2.conv2.norm.bias torch.Size([3584])
input_proj
- input_proj.weight torch.Size([256, 3584, 1, 1])
- input_proj.bias torch.Size([256])
encoder
- encoder.layers.0.norm1.weight torch.Size([256])
- encoder.layers.0.norm1.bias torch.Size([256])
- encoder.layers.0.norm2.weight torch.Size([256])
- encoder.layers.0.norm2.bias torch.Size([256])
- encoder.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.0.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.0.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.0.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.0.mlp.linear1.bias torch.Size([2048])
- encoder.layers.0.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.0.mlp.linear2.bias torch.Size([256])
- encoder.layers.1.norm1.weight torch.Size([256])
- encoder.layers.1.norm1.bias torch.Size([256])
- encoder.layers.1.norm2.weight torch.Size([256])
- encoder.layers.1.norm2.bias torch.Size([256])
- encoder.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.1.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.1.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.1.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.1.mlp.linear1.bias torch.Size([2048])
- encoder.layers.1.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.1.mlp.linear2.bias torch.Size([256])
- encoder.layers.2.norm1.weight torch.Size([256])
- encoder.layers.2.norm1.bias torch.Size([256])
- encoder.layers.2.norm2.weight torch.Size([256])
- encoder.layers.2.norm2.bias torch.Size([256])
- encoder.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.2.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.2.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.2.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.2.mlp.linear1.bias torch.Size([2048])
- encoder.layers.2.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.2.mlp.linear2.bias torch.Size([256])
- encoder.norm.weight torch.Size([256])
- encoder.norm.bias torch.Size([256])
ope
- ope.iterative_adaptation.layers.0.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.0.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.0.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.0.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.0.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.0.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.1.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.1.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.1.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.1.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.1.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.2.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.2.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.2.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.2.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.2.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.norm.weight torch.Size([256])
- ope.iterative_adaptation.norm.bias torch.Size([256])
ope.shape_or_objectness
- ope.shape_or_objectness.0.weight torch.Size([64, 2])
- ope.shape_or_objectness.0.bias torch.Size([64])
- ope.shape_or_objectness.2.weight torch.Size([256, 64])
- ope.shape_or_objectness.2.bias torch.Size([256])
- ope.shape_or_objectness.4.weight torch.Size([2304, 256])
- ope.shape_or_objectness.4.bias torch.Size([2304])
回归头
- regression_head.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- regression_head.regressor.0.layer.0.bias torch.Size([128])
- regression_head.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- regression_head.regressor.1.layer.0.bias torch.Size([64])
- regression_head.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- regression_head.regressor.2.layer.0.bias torch.Size([32])
- regression_head.regressor.3.weight torch.Size([1, 32, 1, 1])
- regression_head.regressor.3.bias torch.Size([1])
辅助头
- aux_heads.0.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- aux_heads.0.regressor.0.layer.0.bias torch.Size([128])
- aux_heads.0.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- aux_heads.0.regressor.1.layer.0.bias torch.Size([64])
- aux_heads.0.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- aux_heads.0.regressor.2.layer.0.bias torch.Size([32])
- aux_heads.0.regressor.3.weight torch.Size([1, 32, 1, 1])
- aux_heads.0.regressor.3.bias torch.Size([1])
- aux_heads.1.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- aux_heads.1.regressor.0.layer.0.bias torch.Size([128])
- aux_heads.1.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- aux_heads.1.regressor.1.layer.0.bias torch.Size([64])
- aux_heads.1.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- aux_heads.1.regressor.2.layer.0.bias torch.Size([32])
- aux_heads.1.regressor.3.weight torch.Size([1, 32, 1, 1])
- aux_heads.1.regressor.3.bias torch.Size([1])
Total number of parameters in LOCA: 447974251
Total number of parameters in CCFF: 411099136(这个模块,参数量好大)
相关文章:
【扒网络架构】backbone、ccff
backbone CCFF 还不知道网络连接方式,只是知道了每一层 backbone backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64,…...
linux进程
exit()函数正常结束进程 man ps aux 是在使用 ps 命令时常用的一个选项组合,用于显示系统中所有进程的详细信息。aux 不是 ps 命令的一个正式选项,而是三个选项的组合:a, u, 和 x。这三个选项分别代表不同的含义&#…...
PRVF-4037 : CRS is not installed on any of the nodes
描述:公司要求替换centos,重新安装ORACLE LINUX RAC的数据库做备库,到时候切换成主库,安装Linux7GRID 19C 11G Oracle,顺利安装grid 19c,安装11G数据库软件的时候检测报如题错误:**PRVF-4037 …...
整理 酷炫 Flutter 开源UI框架 FAB
flutter_villains 灵活且易于使用的页面转换。 项目地址:https://github.com/Norbert515/flutter_villains 项目Demo:https://download.csdn.net/download/qq_36040764/89631324...
Unity 编写自己的aar库,接收Android广播(broadcastReceiver)并传递到Unity
编写本文是因为找了很多文章,都比较片段,不容易理解,对于Android新手来说理解起来不友好。我这里写了一个针对比较小白的文章,希望有所帮助。 Android端 首先还是先来写Android端,我们新建一个Android空项目…...
Mysql cast函数、cast用法、字符串转数字、字符串转日期、数据类型转换
文章目录 一、语法二、示例2.1、复杂示例 三、cast与convert的区别 CAST 函数是 SQL 中的一种类型转换函数,它用于将一个数据类型转换为另一个数据类型,这篇文章主要介绍了Mysql中Cast()函数的用法,需要的朋友可以参考下。 Mysql提供了两种将值转换成指…...
微信小程序开发之组件复用机制
新建复用文件,另外需要注册 behavior 例如: 在behavior.js文件中写入方法,并向外暴露出去 写法一: module.exportsBehavior({data: {num: 1},lifetimes: {created() {console.log(1);}} })写法二: const behavior …...
数据结构--线性表
数据结构分类 集合 线性结构(一对一) 树形结构(一对多) 图结构(多对多) 数据结构三要素 1、逻辑结构 2、数据的运算 3、存储结构(物理结构) 线性表分类 1、顺序表 2、链表 3、栈 4、队列 5、串 线性表--顺序表 顺序表的特点 顺序表的删除和插入…...
深入探针:PHP与DTrace的动态追踪艺术
标题:深入探针:PHP与DTrace的动态追踪艺术 在高性能的PHP应用开发中,深入理解代码的执行流程和性能瓶颈是至关重要的。DTrace,作为一种强大的动态追踪工具,为开发者提供了对PHP脚本运行时行为的深入洞察。本文将详细介…...
黑龙江日报报道第5届中国计算机应用技术大赛,赛氪提供赛事支持
2024年7月17日,黑龙江日报、极光新闻对在哈尔滨市举办的第5届中国计算机应用技术大赛全国总决赛进行了深入报道。此次大赛由中国计算机学会主办,中国计算机学会计算机应用专业委员会与赛氪网共同承办,吸引了来自全国各地的顶尖技术团队和选手…...
【计算机网络】LVS四层负载均衡器
https://mobian.blog.csdn.net/article/details/141093263 https://blog.csdn.net/weixin_42175752/article/details/139966198 《高并发的哲学原理》 (基本来自本书) 《亿级流量系统架构设计与实战》 LVS 章文嵩博士创造 LVS(IPVS) 章⽂嵩发…...
Java 守护线程练习 (2024.8.12)
DaemonExercise package DaemonExercise20240812;public class DaemonExercise {public static void main(String[] args) {// 守护线程// 当普通线程执行完毕之后,守护线程没有继续执行的必要,所以说会逐步关闭(并非瞬间关闭)//…...
C#小桌面程序调试出错,如何解决??
🏆本文收录于《CSDN问答解惑-专业版》专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收…...
Seatunnel Mysql数据同步到Mysql
环境 mysql-connector-java-8.0.28.jar、connector-cdc-mysql 配置 env {# You can set SeaTunnel environment configuration hereexecution.parallelism 2job.mode "STREAMING"# 10秒检查一次,可以适当加大这个值checkpoint.interval 10000#execu…...
Java Web —— 第五天(请求响应1)
postman Postman是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件 作用:常用于进行接口测试 简单参数 原始方式 在原始的web程序中,获取请求参数,需要通过HttpServletRequest 对象手动获 http://localhost:8080/simpleParam?nameTom&a…...
【LLMOps】手摸手教你把 Dify 接入微信生态
作者:韩方圆 "Dify on WeChat"开源项目作者 概述 微信作为最热门即时通信软件,拥有巨大的流量。 微信友好的聊天窗口是天然的AI应用LUI(Language User Interface)/CUI(Conversation User Interface)。 微信不仅有个人微信,同时提供…...
Ftrans文件摆渡方案:重塑文件传输与管控的科技先锋
一、哪些行业会用到文件摆渡相关方案 文件摆渡相关的产品和方案通常用于需要在不同的网络、安全域、网段之间传输数据的场景,主要是一些有核心数据需要保护的行业,做了网络隔离和划分。以下是一些应用比较普遍的行业: 金融行业:…...
LaTeX中的除号表示方法详解
/除号 LaTeX中的除号表示方法详解1. 使用斜杠 / 表示除号优点缺点 2. 使用 \frac{} 表示分数形式的除法优点缺点 3. 使用 \div 表示标准除号优点缺点 4. 使用 \over 表示分数形式的除法优点缺点 5. 使用 \dfrac{} 和 \tfrac{} 表示大型和小型分数优点缺点 总结 LaTeX中的除号表…...
DID、DID文档、VC、VP分别是什么 有什么关系
DID(去中心化身份) 定义:DID 是一种去中心化的唯一标识符,用于表示个体、组织或设备的身份。DID 不依赖于中央管理机构,而是由去中心化网络(如区块链)生成和管理。 用途:DID 允许用…...
网络安全应急响应
前言\n在网络安全领域,有一句广为人知的话:“没有绝对的安全”。这意味着任何系统都有可能被攻破。安全攻击的发生并不可怕,可怕的是从头到尾都毫无察觉。当系统遭遇攻击时,企业的安全人员需要立即进行应急响应,以将影…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...
