【扒网络架构】backbone、ccff
backbone
CCFF
还不知道网络连接方式,只是知道了每一层
backbone
- backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])
- backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])
- backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.0.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.0.downsample.0.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.1.conv1.weight torch.Size([64, 256, 1, 1])
- backbone.backbone.layer1.1.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.1.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.2.conv1.weight torch.Size([64, 256, 1, 1])
- backbone.backbone.layer1.2.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.2.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer2.0.conv1.weight torch.Size([128, 256, 1, 1])
- backbone.backbone.layer2.0.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.0.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.0.downsample.0.weight torch.Size([512, 256, 1, 1])
- backbone.backbone.layer2.1.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.1.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.1.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.2.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.2.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.2.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.3.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.3.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.3.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer3.0.conv1.weight torch.Size([256, 512, 1, 1])
- backbone.backbone.layer3.0.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.0.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.0.downsample.0.weight torch.Size([1024, 512, 1, 1])
- backbone.backbone.layer3.1.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.1.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.1.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.2.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.2.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.2.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.3.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.3.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.3.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.4.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.4.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.4.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.5.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.5.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.5.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer4.0.conv1.weight torch.Size([512, 1024, 1, 1])
- backbone.backbone.layer4.0.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.0.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.layer4.0.downsample.0.weight torch.Size([2048, 1024, 1, 1])
- backbone.backbone.layer4.1.conv1.weight torch.Size([512, 2048, 1, 1])
- backbone.backbone.layer4.1.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.1.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.layer4.2.conv1.weight torch.Size([512, 2048, 1, 1])
- backbone.backbone.layer4.2.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.2.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.fc.weight torch.Size([1000, 2048])
- backbone.backbone.fc.bias torch.Size([1000])
ccf
- ccff.conv1.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.conv1.norm.weight torch.Size([3584])
- ccff.conv1.norm.bias torch.Size([3584])
- ccff.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.conv2.norm.weight torch.Size([3584])
- ccff.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.0.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.0.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.0.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.0.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.0.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.0.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.1.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.1.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.1.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.1.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.1.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.1.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.2.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.2.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.2.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.2.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.2.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.2.conv2.norm.bias torch.Size([3584])
input_proj
- input_proj.weight torch.Size([256, 3584, 1, 1])
- input_proj.bias torch.Size([256])
encoder
- encoder.layers.0.norm1.weight torch.Size([256])
- encoder.layers.0.norm1.bias torch.Size([256])
- encoder.layers.0.norm2.weight torch.Size([256])
- encoder.layers.0.norm2.bias torch.Size([256])
- encoder.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.0.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.0.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.0.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.0.mlp.linear1.bias torch.Size([2048])
- encoder.layers.0.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.0.mlp.linear2.bias torch.Size([256])
- encoder.layers.1.norm1.weight torch.Size([256])
- encoder.layers.1.norm1.bias torch.Size([256])
- encoder.layers.1.norm2.weight torch.Size([256])
- encoder.layers.1.norm2.bias torch.Size([256])
- encoder.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.1.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.1.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.1.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.1.mlp.linear1.bias torch.Size([2048])
- encoder.layers.1.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.1.mlp.linear2.bias torch.Size([256])
- encoder.layers.2.norm1.weight torch.Size([256])
- encoder.layers.2.norm1.bias torch.Size([256])
- encoder.layers.2.norm2.weight torch.Size([256])
- encoder.layers.2.norm2.bias torch.Size([256])
- encoder.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.2.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.2.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.2.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.2.mlp.linear1.bias torch.Size([2048])
- encoder.layers.2.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.2.mlp.linear2.bias torch.Size([256])
- encoder.norm.weight torch.Size([256])
- encoder.norm.bias torch.Size([256])
ope
- ope.iterative_adaptation.layers.0.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.0.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.0.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.0.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.0.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.0.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.1.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.1.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.1.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.1.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.1.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.2.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.2.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.2.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.2.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.2.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.norm.weight torch.Size([256])
- ope.iterative_adaptation.norm.bias torch.Size([256])
ope.shape_or_objectness
- ope.shape_or_objectness.0.weight torch.Size([64, 2])
- ope.shape_or_objectness.0.bias torch.Size([64])
- ope.shape_or_objectness.2.weight torch.Size([256, 64])
- ope.shape_or_objectness.2.bias torch.Size([256])
- ope.shape_or_objectness.4.weight torch.Size([2304, 256])
- ope.shape_or_objectness.4.bias torch.Size([2304])
回归头
- regression_head.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- regression_head.regressor.0.layer.0.bias torch.Size([128])
- regression_head.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- regression_head.regressor.1.layer.0.bias torch.Size([64])
- regression_head.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- regression_head.regressor.2.layer.0.bias torch.Size([32])
- regression_head.regressor.3.weight torch.Size([1, 32, 1, 1])
- regression_head.regressor.3.bias torch.Size([1])
辅助头
- aux_heads.0.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- aux_heads.0.regressor.0.layer.0.bias torch.Size([128])
- aux_heads.0.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- aux_heads.0.regressor.1.layer.0.bias torch.Size([64])
- aux_heads.0.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- aux_heads.0.regressor.2.layer.0.bias torch.Size([32])
- aux_heads.0.regressor.3.weight torch.Size([1, 32, 1, 1])
- aux_heads.0.regressor.3.bias torch.Size([1])
- aux_heads.1.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- aux_heads.1.regressor.0.layer.0.bias torch.Size([128])
- aux_heads.1.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- aux_heads.1.regressor.1.layer.0.bias torch.Size([64])
- aux_heads.1.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- aux_heads.1.regressor.2.layer.0.bias torch.Size([32])
- aux_heads.1.regressor.3.weight torch.Size([1, 32, 1, 1])
- aux_heads.1.regressor.3.bias torch.Size([1])
Total number of parameters in LOCA: 447974251
Total number of parameters in CCFF: 411099136(这个模块,参数量好大)
相关文章:

【扒网络架构】backbone、ccff
backbone CCFF 还不知道网络连接方式,只是知道了每一层 backbone backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64,…...

linux进程
exit()函数正常结束进程 man ps aux 是在使用 ps 命令时常用的一个选项组合,用于显示系统中所有进程的详细信息。aux 不是 ps 命令的一个正式选项,而是三个选项的组合:a, u, 和 x。这三个选项分别代表不同的含义&#…...

PRVF-4037 : CRS is not installed on any of the nodes
描述:公司要求替换centos,重新安装ORACLE LINUX RAC的数据库做备库,到时候切换成主库,安装Linux7GRID 19C 11G Oracle,顺利安装grid 19c,安装11G数据库软件的时候检测报如题错误:**PRVF-4037 …...

整理 酷炫 Flutter 开源UI框架 FAB
flutter_villains 灵活且易于使用的页面转换。 项目地址:https://github.com/Norbert515/flutter_villains 项目Demo:https://download.csdn.net/download/qq_36040764/89631324...

Unity 编写自己的aar库,接收Android广播(broadcastReceiver)并传递到Unity
编写本文是因为找了很多文章,都比较片段,不容易理解,对于Android新手来说理解起来不友好。我这里写了一个针对比较小白的文章,希望有所帮助。 Android端 首先还是先来写Android端,我们新建一个Android空项目…...
Mysql cast函数、cast用法、字符串转数字、字符串转日期、数据类型转换
文章目录 一、语法二、示例2.1、复杂示例 三、cast与convert的区别 CAST 函数是 SQL 中的一种类型转换函数,它用于将一个数据类型转换为另一个数据类型,这篇文章主要介绍了Mysql中Cast()函数的用法,需要的朋友可以参考下。 Mysql提供了两种将值转换成指…...

微信小程序开发之组件复用机制
新建复用文件,另外需要注册 behavior 例如: 在behavior.js文件中写入方法,并向外暴露出去 写法一: module.exportsBehavior({data: {num: 1},lifetimes: {created() {console.log(1);}} })写法二: const behavior …...

数据结构--线性表
数据结构分类 集合 线性结构(一对一) 树形结构(一对多) 图结构(多对多) 数据结构三要素 1、逻辑结构 2、数据的运算 3、存储结构(物理结构) 线性表分类 1、顺序表 2、链表 3、栈 4、队列 5、串 线性表--顺序表 顺序表的特点 顺序表的删除和插入…...
深入探针:PHP与DTrace的动态追踪艺术
标题:深入探针:PHP与DTrace的动态追踪艺术 在高性能的PHP应用开发中,深入理解代码的执行流程和性能瓶颈是至关重要的。DTrace,作为一种强大的动态追踪工具,为开发者提供了对PHP脚本运行时行为的深入洞察。本文将详细介…...

黑龙江日报报道第5届中国计算机应用技术大赛,赛氪提供赛事支持
2024年7月17日,黑龙江日报、极光新闻对在哈尔滨市举办的第5届中国计算机应用技术大赛全国总决赛进行了深入报道。此次大赛由中国计算机学会主办,中国计算机学会计算机应用专业委员会与赛氪网共同承办,吸引了来自全国各地的顶尖技术团队和选手…...

【计算机网络】LVS四层负载均衡器
https://mobian.blog.csdn.net/article/details/141093263 https://blog.csdn.net/weixin_42175752/article/details/139966198 《高并发的哲学原理》 (基本来自本书) 《亿级流量系统架构设计与实战》 LVS 章文嵩博士创造 LVS(IPVS) 章⽂嵩发…...
Java 守护线程练习 (2024.8.12)
DaemonExercise package DaemonExercise20240812;public class DaemonExercise {public static void main(String[] args) {// 守护线程// 当普通线程执行完毕之后,守护线程没有继续执行的必要,所以说会逐步关闭(并非瞬间关闭)//…...

C#小桌面程序调试出错,如何解决??
🏆本文收录于《CSDN问答解惑-专业版》专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收…...

Seatunnel Mysql数据同步到Mysql
环境 mysql-connector-java-8.0.28.jar、connector-cdc-mysql 配置 env {# You can set SeaTunnel environment configuration hereexecution.parallelism 2job.mode "STREAMING"# 10秒检查一次,可以适当加大这个值checkpoint.interval 10000#execu…...

Java Web —— 第五天(请求响应1)
postman Postman是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件 作用:常用于进行接口测试 简单参数 原始方式 在原始的web程序中,获取请求参数,需要通过HttpServletRequest 对象手动获 http://localhost:8080/simpleParam?nameTom&a…...

【LLMOps】手摸手教你把 Dify 接入微信生态
作者:韩方圆 "Dify on WeChat"开源项目作者 概述 微信作为最热门即时通信软件,拥有巨大的流量。 微信友好的聊天窗口是天然的AI应用LUI(Language User Interface)/CUI(Conversation User Interface)。 微信不仅有个人微信,同时提供…...

Ftrans文件摆渡方案:重塑文件传输与管控的科技先锋
一、哪些行业会用到文件摆渡相关方案 文件摆渡相关的产品和方案通常用于需要在不同的网络、安全域、网段之间传输数据的场景,主要是一些有核心数据需要保护的行业,做了网络隔离和划分。以下是一些应用比较普遍的行业: 金融行业:…...
LaTeX中的除号表示方法详解
/除号 LaTeX中的除号表示方法详解1. 使用斜杠 / 表示除号优点缺点 2. 使用 \frac{} 表示分数形式的除法优点缺点 3. 使用 \div 表示标准除号优点缺点 4. 使用 \over 表示分数形式的除法优点缺点 5. 使用 \dfrac{} 和 \tfrac{} 表示大型和小型分数优点缺点 总结 LaTeX中的除号表…...
DID、DID文档、VC、VP分别是什么 有什么关系
DID(去中心化身份) 定义:DID 是一种去中心化的唯一标识符,用于表示个体、组织或设备的身份。DID 不依赖于中央管理机构,而是由去中心化网络(如区块链)生成和管理。 用途:DID 允许用…...
网络安全应急响应
前言\n在网络安全领域,有一句广为人知的话:“没有绝对的安全”。这意味着任何系统都有可能被攻破。安全攻击的发生并不可怕,可怕的是从头到尾都毫无察觉。当系统遭遇攻击时,企业的安全人员需要立即进行应急响应,以将影…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...