【扒网络架构】backbone、ccff
backbone
CCFF
还不知道网络连接方式,只是知道了每一层
backbone
- backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])
- backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])
- backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.0.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.0.downsample.0.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.1.conv1.weight torch.Size([64, 256, 1, 1])
- backbone.backbone.layer1.1.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.1.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer1.2.conv1.weight torch.Size([64, 256, 1, 1])
- backbone.backbone.layer1.2.conv2.weight torch.Size([64, 64, 3, 3])
- backbone.backbone.layer1.2.conv3.weight torch.Size([256, 64, 1, 1])
- backbone.backbone.layer2.0.conv1.weight torch.Size([128, 256, 1, 1])
- backbone.backbone.layer2.0.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.0.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.0.downsample.0.weight torch.Size([512, 256, 1, 1])
- backbone.backbone.layer2.1.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.1.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.1.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.2.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.2.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.2.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer2.3.conv1.weight torch.Size([128, 512, 1, 1])
- backbone.backbone.layer2.3.conv2.weight torch.Size([128, 128, 3, 3])
- backbone.backbone.layer2.3.conv3.weight torch.Size([512, 128, 1, 1])
- backbone.backbone.layer3.0.conv1.weight torch.Size([256, 512, 1, 1])
- backbone.backbone.layer3.0.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.0.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.0.downsample.0.weight torch.Size([1024, 512, 1, 1])
- backbone.backbone.layer3.1.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.1.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.1.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.2.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.2.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.2.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.3.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.3.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.3.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.4.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.4.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.4.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer3.5.conv1.weight torch.Size([256, 1024, 1, 1])
- backbone.backbone.layer3.5.conv2.weight torch.Size([256, 256, 3, 3])
- backbone.backbone.layer3.5.conv3.weight torch.Size([1024, 256, 1, 1])
- backbone.backbone.layer4.0.conv1.weight torch.Size([512, 1024, 1, 1])
- backbone.backbone.layer4.0.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.0.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.layer4.0.downsample.0.weight torch.Size([2048, 1024, 1, 1])
- backbone.backbone.layer4.1.conv1.weight torch.Size([512, 2048, 1, 1])
- backbone.backbone.layer4.1.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.1.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.layer4.2.conv1.weight torch.Size([512, 2048, 1, 1])
- backbone.backbone.layer4.2.conv2.weight torch.Size([512, 512, 3, 3])
- backbone.backbone.layer4.2.conv3.weight torch.Size([2048, 512, 1, 1])
- backbone.backbone.fc.weight torch.Size([1000, 2048])
- backbone.backbone.fc.bias torch.Size([1000])
ccf
- ccff.conv1.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.conv1.norm.weight torch.Size([3584])
- ccff.conv1.norm.bias torch.Size([3584])
- ccff.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.conv2.norm.weight torch.Size([3584])
- ccff.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.0.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.0.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.0.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.0.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.0.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.0.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.1.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.1.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.1.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.1.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.1.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.1.conv2.norm.bias torch.Size([3584])
- ccff.bottlenecks.2.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
- ccff.bottlenecks.2.conv1.norm.weight torch.Size([3584])
- ccff.bottlenecks.2.conv1.norm.bias torch.Size([3584])
- ccff.bottlenecks.2.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
- ccff.bottlenecks.2.conv2.norm.weight torch.Size([3584])
- ccff.bottlenecks.2.conv2.norm.bias torch.Size([3584])
input_proj
- input_proj.weight torch.Size([256, 3584, 1, 1])
- input_proj.bias torch.Size([256])
encoder
- encoder.layers.0.norm1.weight torch.Size([256])
- encoder.layers.0.norm1.bias torch.Size([256])
- encoder.layers.0.norm2.weight torch.Size([256])
- encoder.layers.0.norm2.bias torch.Size([256])
- encoder.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.0.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.0.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.0.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.0.mlp.linear1.bias torch.Size([2048])
- encoder.layers.0.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.0.mlp.linear2.bias torch.Size([256])
- encoder.layers.1.norm1.weight torch.Size([256])
- encoder.layers.1.norm1.bias torch.Size([256])
- encoder.layers.1.norm2.weight torch.Size([256])
- encoder.layers.1.norm2.bias torch.Size([256])
- encoder.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.1.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.1.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.1.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.1.mlp.linear1.bias torch.Size([2048])
- encoder.layers.1.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.1.mlp.linear2.bias torch.Size([256])
- encoder.layers.2.norm1.weight torch.Size([256])
- encoder.layers.2.norm1.bias torch.Size([256])
- encoder.layers.2.norm2.weight torch.Size([256])
- encoder.layers.2.norm2.bias torch.Size([256])
- encoder.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
- encoder.layers.2.self_attn.in_proj_bias torch.Size([768])
- encoder.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
- encoder.layers.2.self_attn.out_proj.bias torch.Size([256])
- encoder.layers.2.mlp.linear1.weight torch.Size([2048, 256])
- encoder.layers.2.mlp.linear1.bias torch.Size([2048])
- encoder.layers.2.mlp.linear2.weight torch.Size([256, 2048])
- encoder.layers.2.mlp.linear2.bias torch.Size([256])
- encoder.norm.weight torch.Size([256])
- encoder.norm.bias torch.Size([256])
ope
- ope.iterative_adaptation.layers.0.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.0.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.0.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.0.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.0.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.0.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.0.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.0.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.1.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.1.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.1.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.1.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.1.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.1.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.1.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm1.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm1.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm2.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm2.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.norm3.weight torch.Size([256])
- ope.iterative_adaptation.layers.2.norm3.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.2.self_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.2.self_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_weight torch.Size([768, 256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_bias torch.Size([768])
- ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.weight torch.Size([256, 256])
- ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.bias torch.Size([256])
- ope.iterative_adaptation.layers.2.mlp.linear1.weight torch.Size([2048, 256])
- ope.iterative_adaptation.layers.2.mlp.linear1.bias torch.Size([2048])
- ope.iterative_adaptation.layers.2.mlp.linear2.weight torch.Size([256, 2048])
- ope.iterative_adaptation.layers.2.mlp.linear2.bias torch.Size([256])
- ope.iterative_adaptation.norm.weight torch.Size([256])
- ope.iterative_adaptation.norm.bias torch.Size([256])
ope.shape_or_objectness
- ope.shape_or_objectness.0.weight torch.Size([64, 2])
- ope.shape_or_objectness.0.bias torch.Size([64])
- ope.shape_or_objectness.2.weight torch.Size([256, 64])
- ope.shape_or_objectness.2.bias torch.Size([256])
- ope.shape_or_objectness.4.weight torch.Size([2304, 256])
- ope.shape_or_objectness.4.bias torch.Size([2304])
回归头
- regression_head.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- regression_head.regressor.0.layer.0.bias torch.Size([128])
- regression_head.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- regression_head.regressor.1.layer.0.bias torch.Size([64])
- regression_head.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- regression_head.regressor.2.layer.0.bias torch.Size([32])
- regression_head.regressor.3.weight torch.Size([1, 32, 1, 1])
- regression_head.regressor.3.bias torch.Size([1])
辅助头
- aux_heads.0.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- aux_heads.0.regressor.0.layer.0.bias torch.Size([128])
- aux_heads.0.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- aux_heads.0.regressor.1.layer.0.bias torch.Size([64])
- aux_heads.0.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- aux_heads.0.regressor.2.layer.0.bias torch.Size([32])
- aux_heads.0.regressor.3.weight torch.Size([1, 32, 1, 1])
- aux_heads.0.regressor.3.bias torch.Size([1])
- aux_heads.1.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
- aux_heads.1.regressor.0.layer.0.bias torch.Size([128])
- aux_heads.1.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
- aux_heads.1.regressor.1.layer.0.bias torch.Size([64])
- aux_heads.1.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
- aux_heads.1.regressor.2.layer.0.bias torch.Size([32])
- aux_heads.1.regressor.3.weight torch.Size([1, 32, 1, 1])
- aux_heads.1.regressor.3.bias torch.Size([1])
Total number of parameters in LOCA: 447974251
Total number of parameters in CCFF: 411099136(这个模块,参数量好大)
相关文章:

【扒网络架构】backbone、ccff
backbone CCFF 还不知道网络连接方式,只是知道了每一层 backbone backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64,…...

linux进程
exit()函数正常结束进程 man ps aux 是在使用 ps 命令时常用的一个选项组合,用于显示系统中所有进程的详细信息。aux 不是 ps 命令的一个正式选项,而是三个选项的组合:a, u, 和 x。这三个选项分别代表不同的含义&#…...

PRVF-4037 : CRS is not installed on any of the nodes
描述:公司要求替换centos,重新安装ORACLE LINUX RAC的数据库做备库,到时候切换成主库,安装Linux7GRID 19C 11G Oracle,顺利安装grid 19c,安装11G数据库软件的时候检测报如题错误:**PRVF-4037 …...

整理 酷炫 Flutter 开源UI框架 FAB
flutter_villains 灵活且易于使用的页面转换。 项目地址:https://github.com/Norbert515/flutter_villains 项目Demo:https://download.csdn.net/download/qq_36040764/89631324...

Unity 编写自己的aar库,接收Android广播(broadcastReceiver)并传递到Unity
编写本文是因为找了很多文章,都比较片段,不容易理解,对于Android新手来说理解起来不友好。我这里写了一个针对比较小白的文章,希望有所帮助。 Android端 首先还是先来写Android端,我们新建一个Android空项目…...
Mysql cast函数、cast用法、字符串转数字、字符串转日期、数据类型转换
文章目录 一、语法二、示例2.1、复杂示例 三、cast与convert的区别 CAST 函数是 SQL 中的一种类型转换函数,它用于将一个数据类型转换为另一个数据类型,这篇文章主要介绍了Mysql中Cast()函数的用法,需要的朋友可以参考下。 Mysql提供了两种将值转换成指…...

微信小程序开发之组件复用机制
新建复用文件,另外需要注册 behavior 例如: 在behavior.js文件中写入方法,并向外暴露出去 写法一: module.exportsBehavior({data: {num: 1},lifetimes: {created() {console.log(1);}} })写法二: const behavior …...

数据结构--线性表
数据结构分类 集合 线性结构(一对一) 树形结构(一对多) 图结构(多对多) 数据结构三要素 1、逻辑结构 2、数据的运算 3、存储结构(物理结构) 线性表分类 1、顺序表 2、链表 3、栈 4、队列 5、串 线性表--顺序表 顺序表的特点 顺序表的删除和插入…...
深入探针:PHP与DTrace的动态追踪艺术
标题:深入探针:PHP与DTrace的动态追踪艺术 在高性能的PHP应用开发中,深入理解代码的执行流程和性能瓶颈是至关重要的。DTrace,作为一种强大的动态追踪工具,为开发者提供了对PHP脚本运行时行为的深入洞察。本文将详细介…...

黑龙江日报报道第5届中国计算机应用技术大赛,赛氪提供赛事支持
2024年7月17日,黑龙江日报、极光新闻对在哈尔滨市举办的第5届中国计算机应用技术大赛全国总决赛进行了深入报道。此次大赛由中国计算机学会主办,中国计算机学会计算机应用专业委员会与赛氪网共同承办,吸引了来自全国各地的顶尖技术团队和选手…...

【计算机网络】LVS四层负载均衡器
https://mobian.blog.csdn.net/article/details/141093263 https://blog.csdn.net/weixin_42175752/article/details/139966198 《高并发的哲学原理》 (基本来自本书) 《亿级流量系统架构设计与实战》 LVS 章文嵩博士创造 LVS(IPVS) 章⽂嵩发…...
Java 守护线程练习 (2024.8.12)
DaemonExercise package DaemonExercise20240812;public class DaemonExercise {public static void main(String[] args) {// 守护线程// 当普通线程执行完毕之后,守护线程没有继续执行的必要,所以说会逐步关闭(并非瞬间关闭)//…...

C#小桌面程序调试出错,如何解决??
🏆本文收录于《CSDN问答解惑-专业版》专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收…...

Seatunnel Mysql数据同步到Mysql
环境 mysql-connector-java-8.0.28.jar、connector-cdc-mysql 配置 env {# You can set SeaTunnel environment configuration hereexecution.parallelism 2job.mode "STREAMING"# 10秒检查一次,可以适当加大这个值checkpoint.interval 10000#execu…...

Java Web —— 第五天(请求响应1)
postman Postman是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件 作用:常用于进行接口测试 简单参数 原始方式 在原始的web程序中,获取请求参数,需要通过HttpServletRequest 对象手动获 http://localhost:8080/simpleParam?nameTom&a…...

【LLMOps】手摸手教你把 Dify 接入微信生态
作者:韩方圆 "Dify on WeChat"开源项目作者 概述 微信作为最热门即时通信软件,拥有巨大的流量。 微信友好的聊天窗口是天然的AI应用LUI(Language User Interface)/CUI(Conversation User Interface)。 微信不仅有个人微信,同时提供…...

Ftrans文件摆渡方案:重塑文件传输与管控的科技先锋
一、哪些行业会用到文件摆渡相关方案 文件摆渡相关的产品和方案通常用于需要在不同的网络、安全域、网段之间传输数据的场景,主要是一些有核心数据需要保护的行业,做了网络隔离和划分。以下是一些应用比较普遍的行业: 金融行业:…...
LaTeX中的除号表示方法详解
/除号 LaTeX中的除号表示方法详解1. 使用斜杠 / 表示除号优点缺点 2. 使用 \frac{} 表示分数形式的除法优点缺点 3. 使用 \div 表示标准除号优点缺点 4. 使用 \over 表示分数形式的除法优点缺点 5. 使用 \dfrac{} 和 \tfrac{} 表示大型和小型分数优点缺点 总结 LaTeX中的除号表…...
DID、DID文档、VC、VP分别是什么 有什么关系
DID(去中心化身份) 定义:DID 是一种去中心化的唯一标识符,用于表示个体、组织或设备的身份。DID 不依赖于中央管理机构,而是由去中心化网络(如区块链)生成和管理。 用途:DID 允许用…...
网络安全应急响应
前言\n在网络安全领域,有一句广为人知的话:“没有绝对的安全”。这意味着任何系统都有可能被攻破。安全攻击的发生并不可怕,可怕的是从头到尾都毫无察觉。当系统遭遇攻击时,企业的安全人员需要立即进行应急响应,以将影…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...