当前位置: 首页 > news >正文

白骑士的Matlab教学高级篇 3.2 并行计算

系列目录

上一篇:白骑士的Matlab教学高级篇 3.1 高级编程技术

        并行计算是一种通过同时执行多个计算任务来加速程序运行的方法。在MATLAB中,并行计算工具箱(Parallel Computing Toolbox)提供了丰富的并行计算功能,使用户可以充分利用多核处理器、图形处理单元(GPU)和计算集群来提升计算效率。本节将介绍并行计算的基本概念、并行for循环(parfor)、GPU计算和集群计算。

并行计算简介

        并行计算是一种计算模式,通过同时进行多个计算任务来提高计算效率。它通常应用于需要大量计算的任务,如数值模拟、大数据处理和复杂算法等。MATLAB通过并行计算工具箱,支持多种并行计算方法,使用户能够在多核处理器、GPU和集群环境中高效执行计算任务。

并行计算的优点

  1. 提高计算速度:通过并行执行多个任务,可以显著减少计算时间。
  2. 优化资源利用:充分利用多核处理器和GPU的计算能力,提升资源利用率。
  3. 处理大规模问题:并行计算使得处理大规模数据和复杂问题成为可能。

并行计算的挑战

  1. 任务划分:需要合理划分任务,以实现负载均衡,避免计算资源闲置。
  2. 数据依赖性:需要处理任务之间的依赖关系,避免竞争条件和数据冲突。
  3. 通信开销:需要考虑不同任务之间的通信开销,尽量减少数据传输时间。

并行for循环(parfor)

        在MATLAB中,并行for循环(parfor)是一种常用的并行计算方式,适用于独立且可以并行执行的循环迭代。parfor与标准for循环类似,但其迭代可以在多个处理器核心上并行执行,从而加速计算。

基本语法

parfor i = 1:N% 并行执行的代码
end

示例

        以下是一个使用parfor的简单示例,用于计算矩阵元素的平方和:

N = 1000000;
A = rand(N, 1); % 生成随机矩阵
sumResult = 0;parfor i = 1:NsumResult = sumResult + A(i)^2;
enddisp(sumResult);

        在上述示例中,parfor循环将随机矩阵A的每个元素的平方和进行计算,分配到多个处理器核心并行执行,从而加速了计算过程。

注意事项

  1. 变量划分:parfor循环中的变量分为"循环变量"、"临时变量"和"切片变量"。需要注意变量的划分和使用,以确保并行计算的正确性。
  2. 数据依赖性:需要避免parfor循环中的数据依赖性,确保每个迭代都是独立的。
  3. 调试与性能优化:可以使用‘tic‘和‘toc‘函数来测量parfor循环的执行时间,并通过调整并行参数来优化性能。

GPU计算

        GPU(图形处理单元)是一种专门用于图形处理和并行计算的处理器,具有强大的计算能力。在MATLAB中,用户可以使用GPU计算工具箱(Parallel Computing Toolbox)在GPU上执行计算任务,以显著加速计算。

基本用法

        在MATLAB中,可以使用 ‘gpuArray‘ 函数将数据从CPU传输到GPU,并使用GPU上的函数进行计算,例如:

A = rand(1000, 1000);
B = gpuArray(A); % 将数据传输到GPU
C = B.^2; % 在GPU上进行计算
D = gather(C); % 将结果从GPU传回CPU

示例

        以下是一个使用GPU计算的示例,用于计算矩阵乘法:

A = rand(1000, 1000);
B = rand(1000, 1000);A_gpu = gpuArray(A); % 将数据传输到GPU
B_gpu = gpuArray(B);
C_gpu = A_gpu * B_gpu; % 在GPU上进行矩阵乘法C = gather(C_gpu); % 将结果从GPU传回CPUdisp(C);

        在上述示例中,矩阵A和B被传输到GPU进行乘法计算,然后将结果传回CPU,这样可以显著加速计算过程。

集群计算

        集群计算是一种通过多个计算节点(计算机)协同工作来完成计算任务的方法。在MATLAB中,用户可以使用并行计算工具箱和MATLAB分布式计算服务器(MATLAB Distributed Computing Server)来在集群上执行计算任务。

基本概念

  1. 计算节点:集群中的每台计算机称为计算节点,负责执行计算任务。
  2. 作业调度器:用于管理和调度计算任务到各个计算节点。
  3. 作业与任务:在集群上提交的计算任务称为作业(job),作业中的子任务称为任务(task)。

使用步骤

  • 配置集群:配置集群环境,包括安装MATLAB分布式计算服务器和设置作业调度器。
  • 编写代码:编写并行计算代码,并使用‘parpool‘函数启动并行计算池。
  • 提交作业:使用‘batch‘函数提交作业到集群,并监控作业执行状态。

示例

        以下是一个在集群上执行并行计算的示例:

% 启动并行计算池
parpool('MyCluster', 4); % 使用4个计算节点% 提交作业
job = batch(@myFunction, 1, {inputData});% 等待作业完成
wait(job);% 获取结果
result = fetchOutputs(job);
disp(result);% 关闭并行计算池
delete(gcp('nocreate'));function output = myFunction(input)% 用户定义的计算函数output = input.^2;
end

        在上述示例中,‘parpool‘ 函数启动了一个并行计算池,‘batch‘ 函数提交了一个并行计算作业,‘wait‘ 函数等待作业完成,‘fetchOutputs‘ 函数获取作业结果。整个计算过程在集群上并行执行,从而提高计算效率。

总结

        通过并行计算,MATLAB用户可以显著提高计算效率,充分利用多核处理器、GPU和计算集群的强大计算能力。并行for循环(parfor)、GPU计算和集群计算是MATLAB中常用的并行计算方法,掌握这些技术可以帮助用户高效地解决复杂计算问题。在实际应用中,根据具体需求选择合适的并行计算方法,可以显著提升MATLAB程序的性能和运行效率。

下一篇:白骑士的Matlab教学高级篇 3.3 工具箱与扩展​​​​​​​

相关文章:

白骑士的Matlab教学高级篇 3.2 并行计算

系列目录 上一篇:白骑士的Matlab教学高级篇 3.1 高级编程技术 并行计算是一种通过同时执行多个计算任务来加速程序运行的方法。在MATLAB中,并行计算工具箱(Parallel Computing Toolbox)提供了丰富的并行计算功能,使用…...

JS中【解构赋值】知识点解读

解构赋值(Destructuring Assignment)是 JavaScript 中一种从数组或对象中提取数据的简便方法,可以将其赋值给变量。这种语法可以让代码更加简洁、清晰。下面我会详细讲解解构赋值的相关知识点。 1. 数组解构赋值 数组解构赋值允许你通过位置…...

【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object

【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object 本次修炼方法请往下查看 🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地! 🎇 …...

第10章 无持久存储的文件系统 (1)

目录 前言 10.1 proc文件系统 10.1.1 /proc 内容 本专栏文章将有70篇左右,欢迎关注,查看后续文章。 前言 即存在于内存中的文件系统。如: proc: sysfs: 即/sys目录。 内容不一定是ASCII文本,可能是二进…...

如何把命令行创建python虚拟环境与pycharm项目管理更好地结合起来

1. 问题的提出 我在linux或windows下的某个目录如“X”下使用命令行的方式创建了一个python虚拟环境(参考文章),对应的目录为myvenv, 现在我想使用pycharm创建python项目myproject,并且利用虚拟环境myvenv,怎么办&…...

keepalived+lvs高可用负载均衡集群配置方案

配置方案 一、配置主备节点1. 在主备节点上安装软件2. 编写配置文件3. 启动keepalived服务 二、配置web服务器1. 安装并启动http服务2. 编写主页面3.配置虚拟地址4. 配置ARP 三、测试 服务器IP: 主负载均衡服务器 master 192.168.152.71备负载均衡服务器 backup 192…...

Azure OpenAI Swagger Validation Failure with APIM

题意:Azure OpenAI Swagger 验证失败与 APIM 问题背景: Im converting the Swagger for Azure OpenAI API Version 2023-07-01-preview from json to yaml 我正在将 Azure OpenAI API 版本 2023-07-01-preview 的 Swagger 从 JSON 转换为 YAML。 My S…...

haproxy高级功能配置

介绍HAProxy高级配置及实用案例 一.基于cookie会话保持 cookie value:为当前server指定cookie值,实现基于cookie的会话黏性,相对于基于 source 地址hash 调度算法对客户端的粒度更精准,但同时也加大了haproxy负载,目前此模式使用…...

XXL-JOB分布式定时任务框架快速入门

文章目录 前言定时任务分布式任务调度 1、XXL-JOB介绍1.1 XXL-JOB概述1.2 XXL-JOB特性1.3 整体架构 2、XXL-JOB任务中心环境搭建2.1 XXL-JOB源码下载2.2 IDEA导入xxljob工程2.3 初始化数据库2.4 Docker安装任务管理中心 3、XXL-JOB任务注册测试3.1 引入xxl-job核心依赖3.2 配置…...

直流电机及其驱动

直流电机是一种将电能转换为机械能的装置,有两个电极,当电极正接时,电机正转,当电极反接时,电机反转。 直流电机属于大功率器件,GPIO口无法直接驱动,需要配合电机驱动电路来操作 TB6612是一款双…...

Java-判断一个字符串是否为有效的JSON字符串

在 Java 中判断一个字符串是否为有效的 JSON 字符串,可以使用不同的库来进行验证。常见的库 包括 org.json、com.google.gson 和 com.alibaba.fastjson 等。这里我将展示如何使用 com.alibaba.fastjson 库来实现一个简单的工具类,用于判断给定的字符串…...

FPGA开发板的基本知识及应用

FPGA开发板是一种专门设计用于开发和测试现场可编程门阵列(Field-Programmable Gate Array, FPGA)的硬件平台。FPGA是一种高度可配置的集成电路,能够在制造后被编程以执行各种数字逻辑功能。FPGA开发板通常包含一个FPGA芯片以及一系列支持电路和接口,以便…...

JVM知识总结(性能调优)

文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 性能调优 何时进行JVM调优? 遇到以下情况&#xff0c…...

基于Ascend C的Matmul算子性能优化最佳实践

矩阵乘法是深度学习计算中的基础操作,对于提升模型训练和推理速度至关重要。昇腾AI处理器是一款专门面向AI领域的AI加速器,其AI Core采用达芬奇架构,以高性能Cube计算引擎为基础,针对矩阵运算进行加速,可大幅提高单位面…...

SQL注入之EVAL长度限制突破技巧

要求: PHP Eval函数参数限制在16个字符的情况下 ,如何拿到Webshell? widows小皮环境搭建: 使用phpstudy搭建一个网站。 随后在该eval文件夹下创建一个webshell.php文件,并在其输入代码环境 解题思路: 通…...

稀疏注意力:时间序列预测的局部性和Transformer的存储瓶颈

时间序列预测是许多领域的重要问题,包括对太阳能发电厂发电量、电力消耗和交通拥堵情况的预测。在本文中,提出用Transformer来解决这类预测问题。虽然在我们的初步研究中对其性能印象深刻,但发现了它的两个主要缺点:(1)位置不可知性:规范Tran…...

详谈系统中的环境变量

目录 前言1. 指令背后的本质2. 环境变量背后的本质3. 环境变量到底是什么4. 命令行参数5. 本地变量 与 内置命令6. 环境变量的相关命令 前言 相信在 it 行业学习或者工作的小伙伴们,基本都配置过环境变量(windows环境下),如果你也…...

RAG与LLM原理及实践(11)--- Milvus hybrid search 源码分析及思想

目录 背景 hybrid search 源码分析 WeightedRanker 源码 hybrid search 核心 参数详解 基本入参 扩展入参 aysnc方式代码调用案例 说明 源码逻辑 prepare 调用过程 stub 调用结果 stub 调用过程 blocking 与 async 调用方式 深入内部core weightedRanker 的ch…...

JavaScript模拟空调效果

JavaScript模拟空调效果https://www.bootstrapmb.com/item/15074 在JavaScript中模拟空调效果主要依赖于前端界面的交互和状态变化,因为实际的温度调节、风扇速度调整等硬件操作无法直接通过JavaScript在浏览器中实现。不过,我们可以通过JavaScript来模…...

14.2 Pandas数据处理

欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: 工💗重💗hao💗:野老杂谈 ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。 ⭐…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

GitHub 趋势日报 (2025年06月08日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中&#xff0…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...