当前位置: 首页 > news >正文

OceanBase V4.3 列存引擎之场景问题汇总

在OceanBase 4.3版本发布后(OceanBase社区版 V4.3 免费下载),其新增的列存引擎,及行列混存一体化的能力,可以支持秒级实时分析,引发了用户、开发者及业界人士的广泛讨论。本文选取了这些讨论中较为典型的一些问题,以解答大家的疑惑。

Q1:OceanBase 列存是什么?

OceanBase的列存技术是一种数据存储形态,它将磁盘上的静态数据以列存的方式保存,而将内存中的修改数据以行存的方式保存,这种设计既保证了高效的扫描性能,又兼顾了出色的事务处理能力。

对于分析类查询,列存可以极大地提升查询性能,也是OceanBase做好 HTAP 的一项不可缺少的功能。经典 AP 数据库,列存数据通常是静态的,很难被原地更新,而 OceanBase 的 LSM Tree 架构中 SSTable 是静态的,天然适合列存的实现;MemTable 是动态的,仍然是行存,对于事务处理不会造成额外影响,这样我们可以一定程度上兼顾 TP 类和 AP 类查询的性能。

Q2:列存版推荐配置是什么?


# 设置 collation 为 utf8mb4_bin,性能瞬间提升 15%
set global collation_connection = utf8mb4_bin;
set global collation_server = utf8mb4_bin;set global ob_query_timeout= 10000000000;
set global ob_trx_timeout= 100000000000;
set global ob_sql_work_area_percentage=30;
set global max_allowed_packet=67108864;
# 建议是cpu的10倍
set global parallel_servers_target=1000;
set global parallel_degree_policy = auto;
set global parallel_min_scan_time_threshold = 10;
# 限制 parallel_degree_policy = auto 时的最大 dop
# 出现较大 dop 可能导致性能问题。下面的值建议设为 cpu_count * 2
set global parallel_degree_limit = 0; alter system set compaction_low_thread_score = cpu_count;
alter system set compaction_mid_thread_score = cpu_count;
alter system set default_table_store_format = "column";

注:上述代码中 cpu_count 表示创建租户时指定的 min_cpu。

Q3:如何让租户创建出来的表,默认就是列存表?

这很简单,设置一个租户级配置项即可:

alter system set default_table_store_format = "column";

相应地,也可以把默认建表做成行存,或者行存列存双份:

alter system set default_table_store_format = "row";   //行存
alter system set default_table_store_format = "compound"; //行存列存双份数据

Q4:列存表的空间占用和行存表比怎么样?

列存表的空间比行存表省 20% 左右。为什么不是更多?因为OceanBase的行存表,压缩能力已经非常强了!

下面是一个客户自己测试 TPC-H 100G 的结果,供参考:

1718087748

Q5:如何创建一个列存表?

首先,创建行列混合表(冗余行存列存表)。

非分区表

create table t1(c1 TINYINT,c2 SMALLINT,c3 MEDIUMINT
) with column group (all columns, each column);

分区表:

create table t2(pk int,c1 int,c2 int,primary key (pk)
)
partition by hash(pk) partitions 4
with column group (all columns, each column);

创建行列混合的列存表的时候,总是会用到 with column group (all columns, each column)语法,它表示的意思如下:

  • all columns。把所有列聚合在一起成组,看成一个宽列,一行一行存储。这其实就和原来的行存是一致的。
  • each column。表中的每一列分别使用列格式来存储。

all columns、each column 一起出现,意味着默认创建列存表后同时冗余行存, 每个副本存储两份基线数据。不过值得注意的是,每张表无论多少份基线数据,在 memtable 和转储里的增量数据,依然是共享同一份。

其次,创建纯列存表。

非分区表

create table t3(c1 TINYINT,c2 SMALLINT,c3 MEDIUMINT
) with column group (each column);

分区表:

create table t4(pk1 int,pk2 int,c1 int,c2 int,primary key (pk1, pk2)
)
partition by hash(pk1) partitions 4
with column group (each column);

对于 t4 表,会针对 pk1、pk2、c1、c2 分别建一个列存,同时还会针对 (pk1, pk2)组合建一个行存。

Q6:如何判断是否走到了列存?

扫描走行存时,explain 中显示的是 TABLE FULL SCAN,走到列存时,显示的是 COLUMN TABLE FULL SCAN。以访问下面的 t5 表为例:

create table t5(c1 TINYINT,c2 SMALLINT,c3 MEDIUMINT,c4 INT,c5 INT,PRIMARY KEY(c1, c2)
) with column group(all columns, each column);OceanBase(admin@test)>explain select c1,c2 from t5;
+------------------------------------------------------------------------+
| Query Plan                                                             |
+------------------------------------------------------------------------+
| ===============================================                        |
| |ID|OPERATOR       |NAME|EST.ROWS|EST.TIME(us)|                        |
| -----------------------------------------------                        |
| |0 |TABLE FULL SCAN|t5  |1       |3           |                        |
| ===============================================                        |
| Outputs & filters:                                                     |
| -------------------------------------                                  |
|   0 - output([t5.c1], [t5.c2]), filter(nil), rowset=16                 |
|       access([t5.c1], [t5.c2]), partitions(p0)                         |
|       is_index_back=false, is_global_index=false,                      |
|       range_key([t5.c1], [t5.c2]), range(MIN,MIN ; MAX,MAX)always true |
+------------------------------------------------------------------------+
11 rows in set (0.011 sec)OceanBase(admin@test)>explain select c1 from t5;
+------------------------------------------------------------------------+
| Query Plan                                                             |
+------------------------------------------------------------------------+
| ======================================================                 |
| |ID|OPERATOR              |NAME|EST.ROWS|EST.TIME(us)|                 |
| ------------------------------------------------------                 |
| |0 |COLUMN TABLE FULL SCAN|t5  |1       |3           |                 |
| ======================================================                 |
| Outputs & filters:                                                     |
| -------------------------------------                                  |
|   0 - output([t5.c1]), filter(nil), rowset=16                          |
|       access([t5.c1]), partitions(p0)                                  |
|       is_index_back=false, is_global_index=false,                      |
|       range_key([t5.c1], [t5.c2]), range(MIN,MIN ; MAX,MAX)always true |
+------------------------------------------------------------------------+
11 rows in set (0.003 sec)

Q7:列存支持更新吗?如何更新?memtable里的结构是怎样的?

OceanBase 中,增删改操作都在内存里完成,数据以行存的形式保存在 Memtable 里;而基线数据是只读的,以列存的形式保存在磁盘上。当读取一列数据时,会实时地融合Memtable 中的行存数据和磁盘里的列存数据,输出给用户。这意味着,OceanBase 支持强一致读列存,不会有数据延迟

写入memtable 的数据支持转储,转储数据依然以行存的形式保存。合并后,行存数据和基线列存数据融合,形成新的基线列存数据。

需要注意的是,对于列存表来说,如果存在大量更新操作,并且没有及时合并,查询性能是不优的。推荐批量导入数据后发起一次合并,可以获得最优的查询性能。少量更新,则对性能影响不大。

1718087768

1718087776

Q8:列存里支持部分列集合在一起存储吗?

OceanBase v4.3.3 及之前版本里,仅支持要么每个列独立存储,要么所有列组成行在一起存储。暂不支持任选若干列集合在一起存储。

Q9:最多支持多少列?

目前一个列存表最多支持 4096 列。

Q10:允许增删列吗?

允许增加列,允许删列。支持 varchar 列字符数改大、改小。

列存支持多种 DDL,和行存表无异。

Q11:支持对列存的某一列建索引吗?

支持对列存的某一列建索引。OceanBase 不区分是对列存建索引,还是对行存建索引,默认建出来的索引结构是一样的(行存格式)。

对列存某一列或几列建索引的意义在于可以构造一个覆盖索引,提升点查询性能,或者对特定列做排序以提升排序性能。

Q12:“列存索引”是什么意思?

OceanBase 还支持列存索引的概念,意思是:索引表的结构是列存格式。这里容易和“对列存建索引”混淆。

例如,我们已经有行存表 t6 ,希望对 c3 求和且性能最好,这时可以对 c3 建一个列存索引,例如:

create table t6(c1 TINYINT,c2 SMALLINT,c3 MEDIUMINT
);create /*+ parallel(2) */ index idx1 on t6(c3) with column group (each column);

除此之外,OceanBase还支持更多索引创建方式,如下:

//支持索引中冗余行存
create index idx1 on t1(c2) storing(c1) with column group(all columns, each column);
alter table t1 add index idx1 (c2) storing(c1) with column group(all columns, each column);//纯列存
create index idx1 on t1(c2) storing(c1) with column group(each column);
alter table t1 add index idx1 (c2) storing(c1) with column group(each column);

在数据库索引中使用 STORING 子句的目的是存储额外的非索引列数据到索引中。这可以为特定的查询提供性能优化,既可以避免回表,也可以降低索引排序的代价。当查询仅需要访问存储在索引中的列,而不需要回表查询原始行时,可以大幅提升查询效率。

Q13:列存表的查询有何特点?

冗余行存表中,列存表查询逻辑默认 range scan 走列存模式, point get 仍回退到行存模式。

纯列存表中,任何查询都走列存模式。

Q14:有和 ClickHouse 的性能对比吗?

OceanBase v4.3.1 没有发布测试性能数据。

我们内部对比过OceanBase v4.3.2 开发版和 ClickHouse 的性能,但目前没有第三方的测试和对比结果,因此下文的测试结果仅供参考。

(1)ClickBench(aws) RT 对比。

云上标准测试(c6a.4xlarge 500gb gp2) 配置:16C、32G内存、500G磁盘、1500 iops。

OBCK
cold run114.35139.572
hot run 136.8844.051
hot run 236.8336.831

该对比无Q30改写优化,若Q30改写优化后,OceanBase的测试结果预计可再提升2s。

Q15:使用列存有什么注意事项?

第一,批量导入数据后,建议做一次合并,读性能可以更优。导完数据后租户内触发一次合并,保证数据全部进入基线,租户内执行 alter system major freeze; 然后在系统租户执行 select STATUS from CDB_OB_MAJOR_COMPACTION where TENANT_ID = 租户ID; 判断合并是否完成,当 STATUS 变为 IDLE 即表示合并完成。

第二,合并后,推荐做一次统计信息收集。收集统计信息方法如下:

  • 在业务租户一键对所有表收集统计信息,启动16个线程并发收集

CALL DBMS_STATS.GATHER_SCHEMA_STATS ('db', granularity=>'auto', degree=>16); 

  • 观测统计信息进度可以通过视图 GV$OB_OPT_STAT_GATHER_MONITOR

第三,可以使用全量旁路导入逻辑批量导入数据,使用这种方式导入数据的表无需做合并,就能达到最优列存扫描性能。支持全量旁路导入的工具包括 obloader、原生 load data 命令。

第四,对于非大宽表场景,不使用列存也可能达到和列存相当的性能。这得益于 OceanBase 行存版本中微块级别的行列混合存储架构(遇到这种情况,不用惊讶)。

第五,大数据量表,cold run 和 hot run 性能有区别。

第六,优化器会根据代价估算,自动选择对列数据的访问使用行存还是列存。

第七,列存表合并速度会变慢。

Q16:什么是旁路导入?如何做旁路导入?

旁路导入是一种加快数据导入,并且能够加速数据查询的数据导入方式。大表数据导入,推荐使用旁路导入方式。目前,load data 命令、insert into select 语句支持旁路导入。旁路导入的详细使用方式参考 OceanBase 官网文档。

Q17:支持事务吗?对事务大小有限制吗?

和行存表一样,支持事务,并且事务大小无限制,具备高一致性。

和 Doris 相比,OceanBase 事务能实时性更好。OceanBase 支持大量小事务,而 Doris 必须攒批多行形成大事务后再提交。

Q18:支持使用 FlinkCDC 从其它数据库同步数据到 OceanBase 吗?

支持。例如,使用 FlinkCDC 从 MySQL 同步数据到 OceanBase:OceanBase分布式数据库-海量数据 笔笔算数

Q19:是否支持 Flink Connector 访问 OceanBase?

支持。详见 https://github.com/oceanbase/flink-connector-oceanbase

Q20:列存表的日志同步、备份恢复等有什么特别之处吗?

没有任何特别之处,和行存表一致。同步的日志都是行存模式。

Q21:是否支持将行存表用 DDL 变成列存表?

支持。通过加列存、删行存实现。相关语法示例如下。

create table t1( pk1 int, c2 int, primary key (pk1));alter table t1 add column group(all columns, each column);
alter table t1 drop column group(all columns, each column);alter table t1 add column group(each column);
alter table t1 drop column group(each column);
  • note:alter table t1 drop column group(all columns, each column);执行后,不用担心没有任何 group 来承载数据,所有列会被放到一个叫做 DEFAUTL COLUMN GROUP的默认 group 中。DEFAUTL COLUMN GROUP 中的存储格式,由租户级配置项 default_table_store_format的取值决定。
  • 该操作为 offline DDL,会锁表。线上谨慎使用。

Q22:还有哪些可以进一步提升 AP Query 性能的方法?

根据一些实践经验得知,首先如果不是有特殊排序要求,建表时候字符集不要使用 utf8mb4,而是使用 binary,可以提升性能。例如:

create table t5(c1 TINYINT, c2 VARVHAR(50)) CHARSET=binary with column group (each column);

其次,如用户或者业务可以接受, mysql 租户建表时指定 utf8mb4_bin 字符集,建表时带上:CHARSET = utf8mb4 collate=utf8mb4_bin

此外,增加 UNIT 的 IOPS,可以加速旁路导入。

Q23:面向列存的优化器,有什么特点?

面相列存的优化器,相对于面相行存优化器,增加了:

  • 优化器自主选择行、列存的能力。
  • hint 控制行、列存选择的能力(表级别)。
  • 适配了列存的计划代价计算。
  • 增加了列存的晚期物化优化。

以上就是目前关于列存的解答,如果大家有其他疑问,欢迎在评论区留言讨论。

相关文章:

OceanBase V4.3 列存引擎之场景问题汇总

在OceanBase 4.3版本发布后(OceanBase社区版 V4.3 免费下载),其新增的列存引擎,及行列混存一体化的能力,可以支持秒级实时分析,引发了用户、开发者及业界人士的广泛讨论。本文选取了这些讨论中较为典型的一…...

Spring中的Aware接口及应用场景

Spring框架提供了一些Aware接口,例如ApplicationContextAware, BeanFactoryAware, EnvironmentAware等,这些接口允许你的Bean获取Spring容器的资源。 例如,如果你的Bean实现了ApplicationContextAware接口,那么Spring在启动的时候…...

设计模式 - 建造者模式

💝💝💝首先,欢迎各位来到我的博客!本文深入理解设计模式原理、应用技巧、强调实战操作,提供代码示例和解决方案,适合有一定编程基础并希望提升设计能力的开发者,帮助读者快速掌握并灵活运用设计模式。 💝💝💝如有需要请大家订阅我的专栏【设计模式】哟!我会定…...

MySQL数据分析进阶(十二)设计数据库——PART4

;※食用指南:文章内容为‘CodeWithMosh’SQL进阶教程系列学习笔记,笔记整理比较粗糙,主要目的自存为主,记录完整的学习过程。(图片超级多,慎看!) 【中字】SQL进阶教程 |…...

在 Spring Boot 中使用桥接模式实现灵活的报表生成服务

在软件开发中,桥接模式是一种结构型设计模式,用于将抽象部分与它的实现部分分离,使得这两部分可以独立变化。这种模式非常适合处理需要灵活配置和扩展的场景,比如报表生成服务。本文将详细介绍如何使用桥接模式来实现一个灵活的报…...

算法:外卖调度

题目 有N个餐厅和M个外卖员,每个餐厅在某个时间点会产生一个外卖订单,这些订单都有产生时间、所需送达时间和优先级。外卖员在空闲时会选择最优先的订单来配送,直到所有订单都被送达。具体规则如下: 对于每个餐厅的订单,优先级高…...

leetcode50. Pow(x, n),快速幂算法

leetcode50. Pow(x, n),快速幂算法 实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。 示例 1: 输入:x 2.00000, n 10 输出:1024.00000 示例 2: 输入&#xff…...

Xinstall神器来袭,轻松搞定CPA推广渠道统计!

在数字化营销日益盛行的今天,CPA(按行动付费)推广已成为众多企业营销的重要手段。然而,随着渠道流量和获客途径的不断变化,CPA推广渠道统计的痛点也日益凸显。别担心,Xinstall来帮你解决问题! …...

011 | efinance分析豆一主连期货

👉👉👉 《玩转Python金融量化专栏》👈👈👈 订阅本专栏的可以下载对应的代码和数据集 🚀 上一篇🌟 下一篇⬅️ 010 东方财富帖子标题情绪分析012 akshare分析NYBOT棉花历史数据 ➡️豆一主连期货(通常简称“豆一”)是指中国期货市场上以大豆为标的的期货合约…...

【Python】函数入门(下)

3))* ** ​​​​​​注意:也遵循位置传参在前面,按关键字传参在后面。 代码示例: def func(*args,**kwargs):print(args,kwargs) 该函数中的参数会自动根据传参的方式不同(即:按位置…...

git的基本概念和使用原理

Git是一个分布式版本控制系统,用于跟踪文件的更改并协调多个开发人员之间的工作。以下是Git的基本概念和使用原理及方式: 目录 基本概念 使用原理 基本操作示例 基本概念 版本库(Repository): 版本库是Git用来保存…...

手写简化版的vue-router

vue-router作为vue全家桶之一的重要插件,有必要去深究一下,今天我们就从0到1手写一个简化版本。 开始之前,我们使用路由插件时是先进行下载路由 npm i vue-router ,然后在main.js中使用app.use导入router插件。想要手写vue-rou…...

分享一个基于uni-app的蛋糕商城订购小程序的设计与实现(源码、调试、LW、开题、PPT)

💕💕作者:计算机源码社 💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流&…...

Python绘图入门:使用Matplotlib绘制柱状图

Python绘图入门:使用Matplotlib绘制柱状图 柱状图是一种常见的数据可视化方式,能够直观地展示不同类别之间的数据差异。在Python中,Matplotlib是一个非常强大且灵活的绘图库,它不仅能绘制简单的图表,还能创建复杂的多…...

Qt5编译qmqtt库使用MQTT协议连接华为云IOT完成数据上传与交互

一、前言 随着物联网技术的发展,越来越多的设备通过网络互相连接,形成了庞大的智能系统。这些系统能够收集、分析并响应各种数据,从而实现自动化控制和智能化管理。在这个背景下,MQTT 成为了一个广泛使用的轻量级消息传输协议,特别适用于资源受限的环境,如移动应用或远程…...

mysql速起架子

wget https://dev.mysql.com/get/Downloads/MySQL-8.0/mysql-8.0.21-linux-glibc2.12-x86_64.tar.xz 下载mysql tar xvJf mysql-8.0.21-linux-glibc2.12-x86_64.tar.xz 解压 mv mysql-8.0.21-linux-glibc2.12-x86_64 mysql-8.0 改名 去到bin目录 cd bin mkdir data gr…...

云动态摘要 2024-08-14

给您带来云厂商的最新动态,最新产品资讯和最新优惠更新。 最新优惠与活动 注册阿里云免费领云服务器_云服务器ECS_阿里云 阿里云 2024-08-14 云上试用新玩法,个人享300元免费额度,企业享660元免费额度,多种规格随心试 [免费体验…...

Elasticsearch 桶(Bucket)聚合详解及示例

在 Elasticsearch 中,桶(Bucket)聚合是一种强大的工具,它允许我们对数据进行分组并统计每组的数量。这种聚合类型对于理解数据的分布和进行分组统计非常有用。本文将详细介绍 Elasticsearch 的桶聚合,并提供完整的示例…...

Django基础知识

文章目录 新建Django项目helloworld关联数据库admin 新建Django项目 创建django-admin startproject project_name 运行 python manage.py runserver 创建app: python manage.py startapp app_name 目录: 配置文件 settings.py 路由配置 urls.py 项目管理 manage.p…...

使用 nginx 搭建代理服务器(正向代理 https 网站)指南

简介 正向代理 简介 在企业开发环境中,局域网内的设备通常需要通过正向代理服务器访问互联网。正向代理服务器充当中介,帮助客户端请求外部资源并返回结果。局域网内也就是俗称的内网,局域网外的互联网就是外网,在一些特殊场景内…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

SpringCloud优势

目录 完善的微服务支持 高可用性和容错性 灵活的配置管理 强大的服务网关 分布式追踪能力 丰富的社区生态 易于与其他技术栈集成 完善的微服务支持 Spring Cloud 提供了一整套工具和组件来支持微服务架构的开发,包括服务注册与发现、负载均衡、断路器、配置管理等功能…...

前端打包工具简单介绍

前端打包工具简单介绍 一、Webpack 架构与插件机制 1. Webpack 架构核心组成 Entry&#xff08;入口&#xff09; 指定应用的起点文件&#xff0c;比如 src/index.js。 Module&#xff08;模块&#xff09; Webpack 把项目当作模块图&#xff0c;模块可以是 JS、CSS、图片等…...